Suppr超能文献

美国各地社区新冠疫情负担的州际差异。

State variation in neighborhood COVID-19 burden across the United States.

作者信息

Noppert Grace A, Clarke Philippa, Hoover Andrew, Kubale John, Melendez Robert, Duchowny Kate, Hegde Sonia T

机构信息

Institute for Social Research, University of Michigan, Ann Arbor, USA.

Department of Epidemiology, Johns Hopkins University, Baltimore, USA.

出版信息

Commun Med (Lond). 2024 Mar 1;4(1):36. doi: 10.1038/s43856-024-00459-1.

Abstract

BACKGROUND

A lack of fine, spatially-resolute case data for the U.S. has prevented the examination of how COVID-19 infection burden has been distributed across neighborhoods, a key determinant of both risk and resilience. Without more spatially resolute data, efforts to identify and mitigate the long-term fallout from COVID-19 in vulnerable communities will remain difficult to quantify and intervene on.

METHODS

We leveraged spatially-referenced data from 21 states collated through the COVID Neighborhood Project to examine the distribution of COVID-19 cases across neighborhoods and states in the U.S. We also linked the COVID-19 case data with data on the neighborhood social environment from the National Neighborhood Data Archive. We then estimated correlations between neighborhood COVID-19 burden and features of the neighborhood social environment.

RESULTS

We find that the distribution of COVID-19 at the neighborhood-level varies within and between states. The median case count per neighborhood (coefficient of variation (CV)) in Wisconsin is 3078.52 (0.17) per 10,000 population, indicating a more homogenous distribution of COVID-19 burden, whereas in Vermont the median case count per neighborhood (CV) is 810.98 (0.84) per 10,000 population. We also find that correlations between features of the neighborhood social environment and burden vary in magnitude and direction by state.

CONCLUSIONS

Our findings underscore the importance that local contexts may play when addressing the long-term social and economic fallout communities will face from COVID-19.

摘要

背景

美国缺乏精细的、具有空间分辨率的病例数据,这阻碍了对新冠病毒感染负担如何在各社区分布的研究,而社区是风险和恢复力的关键决定因素。没有更具空间分辨率的数据,识别和减轻弱势群体社区因新冠疫情产生的长期影响的努力将仍然难以量化和进行干预。

方法

我们利用通过新冠社区项目整理的来自21个州的空间参考数据,研究美国各社区和各州的新冠病例分布情况。我们还将新冠病例数据与来自国家社区数据档案的社区社会环境数据相链接。然后,我们估计了社区新冠负担与社区社会环境特征之间的相关性。

结果

我们发现,新冠疫情在社区层面的分布在州内和州际之间存在差异。威斯康星州每个社区的病例数中位数(变异系数(CV))为每10000人口3078.52(0.17)例,这表明新冠负担的分布更为均匀,而在佛蒙特州,每个社区的病例数中位数(CV)为每10000人口810.98(0.84)例。我们还发现,社区社会环境特征与负担之间的相关性在不同州的大小和方向各不相同。

结论

我们的研究结果强调了在应对社区将面临的新冠疫情长期社会和经济影响时,当地情况可能发挥的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42dd/10907669/3e1f4e12bdfc/43856_2024_459_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验