Suppr超能文献

Miffi:通过微调与傅里叶空间信息提高基于 CNN 的冷冻电镜显微图滤波的准确性。

Miffi: Improving the accuracy of CNN-based cryo-EM micrograph filtering with fine-tuning and Fourier space information.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Struct Biol. 2024 Jun;216(2):108072. doi: 10.1016/j.jsb.2024.108072. Epub 2024 Feb 29.

Abstract

Efficient and high-accuracy filtering of cryo-electron microscopy (cryo-EM) micrographs is an emerging challenge with the growing speed of data collection and sizes of datasets. Convolutional neural networks (CNNs) are machine learning models that have been proven successful in many computer vision tasks, and have been previously applied to cryo-EM micrograph filtering. In this work, we demonstrate that two strategies, fine-tuning models from pretrained weights and including the power spectrum of micrographs as input, can greatly improve the attainable prediction accuracy of CNN models. The resulting software package, Miffi, is open-source and freely available for public use (https://github.com/ando-lab/miffi).

摘要

冷冻电子显微镜(cryo-EM)显微照片的高效、高精度过滤是一个新的挑战,随着数据采集速度和数据集规模的不断增长,这一挑战变得愈发严峻。卷积神经网络(CNN)是一种机器学习模型,已被证明在许多计算机视觉任务中取得了成功,并已被应用于 cryo-EM 显微照片过滤。在这项工作中,我们证明了两种策略,即从预训练权重中微调模型和将显微照片的功率谱作为输入,可以极大地提高 CNN 模型的可实现预测精度。由此产生的软件包 Miffi 是开源的,可供公众免费使用(https://github.com/ando-lab/miffi)。

相似文献

1
Miffi: Improving the accuracy of CNN-based cryo-EM micrograph filtering with fine-tuning and Fourier space information.
J Struct Biol. 2024 Jun;216(2):108072. doi: 10.1016/j.jsb.2024.108072. Epub 2024 Feb 29.
3
4
MicrographCleaner: A python package for cryo-EM micrograph cleaning using deep learning.
J Struct Biol. 2020 Jun 1;210(3):107498. doi: 10.1016/j.jsb.2020.107498. Epub 2020 Apr 7.
5
CryoCrane: an open-source GUI for analyzing cryo-EM screening data sets.
Acta Crystallogr F Struct Biol Commun. 2025 Feb 1;81(Pt 2):62-65. doi: 10.1107/S2053230X25000081. Epub 2025 Jan 13.
6
Noise-Transfer2Clean: denoising cryo-EM images based on noise modeling and transfer.
Bioinformatics. 2022 Mar 28;38(7):2022-2029. doi: 10.1093/bioinformatics/btac052.
7
Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps.
Sci Rep. 2020 Mar 9;10(1):4282. doi: 10.1038/s41598-020-60598-y.
8
A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.
BMC Bioinformatics. 2017 Jul 21;18(1):348. doi: 10.1186/s12859-017-1757-y.
9
CryoTransformer: a transformer model for picking protein particles from cryo-EM micrographs.
Bioinformatics. 2024 Mar 4;40(3). doi: 10.1093/bioinformatics/btae109.
10
UPicker: a semi-supervised particle picking transformer method for cryo-EM micrographs.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae636.

引用本文的文献

1
A large-scale curated and filterable dataset for cryo-EM foundation model pre-training.
Sci Data. 2025 Jun 7;12(1):960. doi: 10.1038/s41597-025-05179-2.

本文引用的文献

1
Conformational switching and flexibility in cobalamin-dependent methionine synthase studied by small-angle X-ray scattering and cryoelectron microscopy.
Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2302531120. doi: 10.1073/pnas.2302531120. Epub 2023 Jun 20.
2
Measuring the effects of ice thickness on resolution in single particle cryo-EM.
J Struct Biol X. 2023 Jan 24;7:100085. doi: 10.1016/j.yjsbx.2023.100085. eCollection 2023.
3
Fully automated multi-grid cryoEM screening using Smart Leginon.
IUCrJ. 2023 Jan 1;10(Pt 1):77-89. doi: 10.1107/S2052252522010624.
4
EMPIAR: the Electron Microscopy Public Image Archive.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1503-D1511. doi: 10.1093/nar/gkac1062.
5
High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome.
J Struct Biol. 2023 Mar;215(1):107905. doi: 10.1016/j.jsb.2022.107905. Epub 2022 Oct 12.
6
Automated systematic evaluation of cryo-EM specimens with SmartScope.
Elife. 2022 Aug 23;11:e80047. doi: 10.7554/eLife.80047.
7
High-speed high-resolution data collection on a 200 keV cryo-TEM.
IUCrJ. 2022 Jan 29;9(Pt 2):243-252. doi: 10.1107/S2052252522000069. eCollection 2022 Mar 1.
8
Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy.
Annu Rev Biochem. 2022 Jun 21;91:1-32. doi: 10.1146/annurev-biochem-032620-110705. Epub 2022 Mar 23.
9
Cryo-EM structures of amyloid-β 42 filaments from human brains.
Science. 2022 Jan 14;375(6577):167-172. doi: 10.1126/science.abm7285. Epub 2022 Jan 13.
10
New tools for automated cryo-EM single-particle analysis in RELION-4.0.
Biochem J. 2021 Dec 22;478(24):4169-4185. doi: 10.1042/BCJ20210708.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验