Ge Kangkang, Shao Hui, Raymundo-Piñero Encarnacion, Taberna Pierre-Louis, Simon Patrice
Université Paul Sabatier, CIRIMAT UMR CNRS 5085, 118 Route de Narbonne, 31062, Toulouse, France.
i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, China.
Nat Commun. 2024 Mar 2;15(1):1935. doi: 10.1038/s41467-024-46280-1.
Understanding the local electrochemical processes is of key importance for efficient energy storage applications, including electrochemical double layer capacitors. In this work, we studied the charge storage mechanism of a model material - reduced graphene oxide (rGO) - in aqueous electrolyte using the combination of cavity micro-electrode, operando electrochemical quartz crystal microbalance (EQCM) and operando electrochemical dilatometry (ECD) tools. We evidence two regions with different charge storage mechanisms, depending on the cation-carbon interaction. Notably, under high cathodic polarization (region II), we report an important capacitance increase in Zn containing electrolyte with minimum volume expansion, which is associated with Zn desolvation resulting from strong electrostatic Zn-rGO interactions. These results highlight the significant role of ion-electrode interaction strength and cation desolvation in modulating the charging mechanisms, offering potential pathways for optimized capacitive energy storage. As a broader perspective, understanding confined electrochemical systems and the coupling between chemical, electrochemical and transport processes in confinement may open tremendous opportunities for energy, catalysis or water treatment applications in the future.
了解局部电化学过程对于包括电化学双层电容器在内的高效储能应用至关重要。在这项工作中,我们结合腔微电极、原位电化学石英晶体微天平(EQCM)和原位电化学膨胀法(ECD)工具,研究了一种模型材料——还原氧化石墨烯(rGO)——在水性电解质中的电荷存储机制。我们证明了根据阳离子与碳的相互作用存在两个具有不同电荷存储机制的区域。值得注意的是,在高阴极极化(区域II)下,我们报道了在含锌电解质中电容显著增加且体积膨胀最小,这与强静电Zn-rGO相互作用导致的锌去溶剂化有关。这些结果突出了离子-电极相互作用强度和阳离子去溶剂化在调节充电机制中的重要作用,为优化电容式储能提供了潜在途径。从更广泛的角度来看,了解受限电化学系统以及受限环境中化学、电化学和传输过程之间的耦合可能会在未来为能源、催化或水处理应用带来巨大机遇。