Suppr超能文献

基于局部扩散特征的先验引导个体化丘脑分割

Prior-guided individualized thalamic parcellation based on local diffusion characteristics.

作者信息

Gao Chaohong, Wu Xia, Wang Yaping, Li Gang, Ma Liang, Wang Changshuo, Xie Sangma, Chu Congying, Madsen Kristoffer Hougaard, Hou Zhongyu, Fan Lingzhong

机构信息

Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China.

Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

Hum Brain Mapp. 2024 Mar;45(4):e26646. doi: 10.1002/hbm.26646.

Abstract

Comprising numerous subnuclei, the thalamus intricately interconnects the cortex and subcortex, orchestrating various facets of brain functions. Extracting personalized parcellation patterns for these subnuclei is crucial, as different thalamic nuclei play varying roles in cognition and serve as therapeutic targets for neuromodulation. However, accurately delineating the thalamic nuclei boundary at the individual level is challenging due to intersubject variability. In this study, we proposed a prior-guided parcellation (PG-par) method to achieve robust individualized thalamic parcellation based on a central-boundary prior. We first constructed probabilistic atlas of thalamic nuclei using high-quality diffusion MRI datasets based on the local diffusion characteristics. Subsequently, high-probability voxels in the probabilistic atlas were utilized as prior guidance to train unique multiple classification models for each subject based on a multilayer perceptron. Finally, we employed the trained model to predict the parcellation labels for thalamic voxels and construct individualized thalamic parcellation. Through a test-retest assessment, the proposed prior-guided individualized thalamic parcellation exhibited excellent reproducibility and the capacity to detect individual variability. Compared with group atlas registration and individual clustering parcellation, the proposed PG-par demonstrated superior parcellation performance under different scanning protocols and clinic settings. Furthermore, the prior-guided individualized parcellation exhibited better correspondence with the histological staining atlas. The proposed prior-guided individualized thalamic parcellation method contributes to the personalized modeling of brain parcellation.

摘要

丘脑由众多亚核组成,与皮层和皮层下结构复杂地相互连接,协调大脑功能的各个方面。提取这些亚核的个性化分割模式至关重要,因为不同的丘脑核在认知中发挥着不同的作用,并作为神经调节的治疗靶点。然而,由于个体间的变异性,在个体水平上准确描绘丘脑核边界具有挑战性。在本研究中,我们提出了一种基于先验引导的分割(PG-par)方法,以基于中心边界先验实现稳健的个体化丘脑分割。我们首先基于局部扩散特征,使用高质量的扩散MRI数据集构建丘脑核的概率图谱。随后,概率图谱中的高概率体素被用作先验指导,基于多层感知器为每个受试者训练独特的多分类模型。最后,我们使用训练好的模型预测丘脑体素的分割标签,并构建个体化丘脑分割。通过重测评估,所提出的先验引导个体化丘脑分割表现出优异的可重复性和检测个体变异性的能力。与群体图谱配准和个体聚类分割相比,所提出的PG-par在不同的扫描协议和临床环境下表现出优越的分割性能。此外,先验引导个体化分割与组织学染色图谱表现出更好的一致性。所提出的先验引导个体化丘脑分割方法有助于大脑分割的个性化建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64d6/10910286/18f40cea74ae/HBM-45-e26646-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验