使用自监督深度学习从 fMRI 计算个性化脑功能网络。

Computing personalized brain functional networks from fMRI using self-supervised deep learning.

机构信息

Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Key Laboratory of Brain Circuit Real Time Tracing (BCRTT-Lab), Tianjin University Affiliated Tianjin Fourth Center Hospital; Department of Psychiatry, Tianjin Medical University, Tianjin, China.

出版信息

Med Image Anal. 2023 Apr;85:102756. doi: 10.1016/j.media.2023.102756. Epub 2023 Jan 21.

Abstract

A novel self-supervised deep learning (DL) method is developed to compute personalized brain functional networks (FNs) for characterizing brain functional neuroanatomy based on functional MRI (fMRI). Specifically, a DL model of convolutional neural networks with an encoder-decoder architecture is developed to compute personalized FNs directly from fMRI data. The DL model is trained to optimize functional homogeneity of personalized FNs without utilizing any external supervision in an end-to-end fashion. We demonstrate that a DL model trained on fMRI scans from the Human Connectome Project can identify personalized FNs and generalizes well across four different datasets. We further demonstrate that the identified personalized FNs are informative for predicting individual differences in behavior, brain development, and schizophrenia status. Taken together, the self-supervised DL allows for rapid, generalizable computation of personalized FNs.

摘要

一种新的自监督深度学习(DL)方法被开发出来,用于计算基于功能磁共振成像(fMRI)的个性化脑功能网络(FN),以描述脑功能神经解剖结构。具体来说,开发了一种具有编解码器架构的卷积神经网络的 DL 模型,以便直接从 fMRI 数据中计算个性化 FNs。该 DL 模型在没有任何外部监督的情况下,以端到端的方式进行训练,以优化个性化 FNs 的功能同质性。我们证明,在人类连接组计划的 fMRI 扫描上训练的 DL 模型可以识别个性化 FNs,并在四个不同的数据集上很好地推广。我们进一步证明,所识别的个性化 FNs 对于预测行为、大脑发育和精神分裂症状态的个体差异具有信息性。总之,自监督的 DL 允许快速、可推广地计算个性化 FNs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索