Suppr超能文献

构建基于Ti6Al4V的混合系统以实现响应性和一致性成骨

Engineering a Hybrid Ti6Al4V-Based System for Responsive and Consistent Osteogenesis.

作者信息

Melo-Fonseca Francisca, Gasik Michael, Cruz Andrea, Moreira Daniel, S Silva Filipe, Miranda Georgina, Mendes Pinto Inês

机构信息

Center for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Guimarães 4800-058, Portugal.

LABBELS-Associate Laboratory, Braga, Guimarães 4710-057, Portugal.

出版信息

ACS Omega. 2024 Feb 12;9(8):8985-8994. doi: 10.1021/acsomega.3c07232. eCollection 2024 Feb 27.

Abstract

As the aging population increases worldwide, the incidence of musculoskeletal diseases and the need for orthopedic implants also arise. One of the most desirable goals in orthopedic reconstructive therapies is de novo bone formation. Yet, reproducible, long-lasting, and cost-effective strategies for implants that strongly induce osteogenesis are still in need. Nanoengineered titanium substrates (and their alloys) are among the most used materials in orthopedic implants. Although having high biocompatibility, titanium alloys hold a low bioactivity profile. The osteogenic capacity and osseointegration of Ti-based implantable systems are limited, as they critically depend on the body-substrate interactions defined by blood proteins adsorbed into implant surfaces that ultimately lead to the recruitment, proliferation, and differentiation of mesenchymal stem cells (MSCs) to comply bone formation and regeneration. In this work, a hybrid Ti6Al4V system combining micro- and nanoscale modifications induced by hydrothermal treatment followed by functionalization with a bioactive compound (fibronectin derived from human plasma) is proposed, aiming for bioactivity improvement. An evaluation of the biological activity and cellular responses in vitro with respect to bone regeneration indicated that the integration of morphological and chemical modifications into Ti6Al4V surfaces induces the osteogenic differentiation of MSCs to improve bone regeneration by an enhancement of mineral matrix formation that accelerates the osseointegration process. Overall, this hybrid system has numerous competitive advantages over more complex treatments, including reproducibility, low production cost, and potential for improved long-term maintenance of the implant.

摘要

随着全球老龄化人口的增加,肌肉骨骼疾病的发病率以及对骨科植入物的需求也随之上升。骨科重建治疗中最理想的目标之一是从头形成新骨。然而,对于能强烈诱导成骨的植入物,仍需要可重复、持久且经济高效的策略。纳米工程钛基片(及其合金)是骨科植入物中使用最多的材料之一。尽管钛合金具有高生物相容性,但其生物活性较低。基于钛的可植入系统的成骨能力和骨整合能力有限,因为它们严重依赖于由吸附在植入物表面的血液蛋白所定义的机体与基片的相互作用,最终导致间充质干细胞(MSCs)的募集、增殖和分化,以实现骨形成和再生。在这项工作中,提出了一种混合Ti6Al4V系统,该系统结合了水热处理诱导的微米和纳米尺度修饰,随后用生物活性化合物(源自人血浆的纤连蛋白)进行功能化,旨在提高生物活性。对体外骨再生的生物活性和细胞反应的评估表明,将形态学和化学修饰整合到Ti6Al4V表面可诱导MSCs的成骨分化,通过增强矿物质基质形成来加速骨整合过程,从而改善骨再生。总体而言,这种混合系统相对于更复杂的治疗方法具有许多竞争优势,包括可重复性、低生产成本以及改善植入物长期维持的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9063/10905591/68b889247e2d/ao3c07232_0005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验