Suppr超能文献

基于脑电图的焦虑检测中机器学习技术的全面探索。

A comprehensive exploration of machine learning techniques for EEG-based anxiety detection.

作者信息

Aldayel Mashael, Al-Nafjan Abeer

机构信息

Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.

Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2024 Jan 25;10:e1829. doi: 10.7717/peerj-cs.1829. eCollection 2024.

Abstract

The performance of electroencephalogram (EEG)-based systems depends on the proper choice of feature extraction and machine learning algorithms. This study highlights the significance of selecting appropriate feature extraction and machine learning algorithms for EEG-based anxiety detection. We explored different annotation/labeling, feature extraction, and classification algorithms. Two measurements, the Hamilton anxiety rating scale (HAM-A) and self-assessment Manikin (SAM), were used to label anxiety states. For EEG feature extraction, we employed the discrete wavelet transform (DWT) and power spectral density (PSD). To improve the accuracy of anxiety detection, we compared ensemble learning methods such as random forest (RF), AdaBoost bagging, and gradient bagging with conventional classification algorithms including linear discriminant analysis (LDA), support vector machine (SVM), and k-nearest neighbor (KNN) classifiers. We also evaluated the performance of the classifiers using different labeling (SAM and HAM-A) and feature extraction algorithms (PSD and DWT). Our findings demonstrated that HAM-A labeling and DWT-based features consistently yielded superior results across all classifiers. Specifically, the RF classifier achieved the highest accuracy of 87.5%, followed by the Ada boost bagging classifier with an accuracy of 79%. The RF classifier outperformed other classifiers in terms of accuracy, precision, and recall.

摘要

基于脑电图(EEG)的系统的性能取决于特征提取和机器学习算法的正确选择。本研究强调了为基于EEG的焦虑检测选择合适的特征提取和机器学习算法的重要性。我们探索了不同的标注/标记、特征提取和分类算法。使用两种测量方法,即汉密尔顿焦虑量表(HAM - A)和自我评估人偶(SAM)来标记焦虑状态。对于EEG特征提取,我们采用了离散小波变换(DWT)和功率谱密度(PSD)。为了提高焦虑检测的准确性,我们将随机森林(RF)、AdaBoost装袋和梯度装袋等集成学习方法与包括线性判别分析(LDA)、支持向量机(SVM)和k近邻(KNN)分类器在内的传统分类算法进行了比较。我们还使用不同的标记(SAM和HAM - A)和特征提取算法(PSD和DWT)评估了分类器的性能。我们的研究结果表明,HAM - A标记和基于DWT的特征在所有分类器中始终产生更好的结果。具体而言,RF分类器达到了最高准确率87.5%,其次是Ada boost装袋分类器,准确率为79%。RF分类器在准确率、精确率和召回率方面优于其他分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9466/10909191/41d618d5faf2/peerj-cs-10-1829-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验