Suppr超能文献

实验中用于复制非平稳时间序列的ANOPOW

ANOPOW FOR REPLICATED NONSTATIONARY TIME SERIES IN EXPERIMENTS.

作者信息

Li Zeda, Yue Yu Ryan, Bruce Scott A

机构信息

Baruch College, The City University of New York.

Department of Statistics, Texas A&M University.

出版信息

Ann Appl Stat. 2024 Mar;18(1):328-349. doi: 10.1214/23-aoas1791. Epub 2024 Jan 31.

Abstract

We propose a novel analysis of power (ANOPOW) model for analyzing replicated nonstationary time series commonly encountered in experimental studies. Based on a locally stationary ANOPOW Cramér spectral representation, the proposed model can be used to compare the second-order time-varying frequency patterns among different groups of time series and to estimate group effects as functions of both time and frequency. Formulated in a Bayesian framework, independent two-dimensional second-order random walk (RW2D) priors are assumed on each of the time-varying functional effects for flexible and adaptive smoothing. A piecewise stationary approximation of the nonstationary time series is used to obtain localized estimates of time-varying spectra. Posterior distributions of the time-varying functional group effects are then obtained via integrated nested Laplace approximations (INLA) at a low computational cost. The large-sample distribution of local periodograms can be appropriately utilized to improve estimation accuracy since INLA allows modeling of data with various types of distributions. The usefulness of the proposed model is illustrated through two real data applications: analyses of seismic signals and pupil diameter time series in children with attention deficit hyperactivity disorder. Simulation studies, Supplementary Materials (Li, Yue and Bruce, 2023a), and R code (Li, Yue and Bruce, 2023b) for this article are also available.

摘要

我们提出了一种新颖的功率分析(ANOPOW)模型,用于分析实验研究中常见的重复非平稳时间序列。基于局部平稳的ANOPOW克拉默谱表示,该模型可用于比较不同时间序列组之间的二阶时变频率模式,并估计作为时间和频率函数的组效应。在贝叶斯框架下,对每个时变函数效应假设独立的二维二阶随机游走(RW2D)先验,以实现灵活和自适应的平滑。使用非平稳时间序列的分段平稳近似来获得时变谱的局部估计。然后,通过集成嵌套拉普拉斯近似(INLA)以较低的计算成本获得时变函数组效应的后验分布。由于INLA允许对具有各种分布类型的数据进行建模,因此可以适当地利用局部周期图的大样本分布来提高估计精度。通过两个实际数据应用说明了所提出模型的实用性:对地震信号的分析以及对患有注意力缺陷多动障碍儿童的瞳孔直径时间序列的分析。本文的模拟研究、补充材料(Li、Yue和Bruce,2023a)以及R代码(Li、Yue和Bruce,2023b)也可供使用。

相似文献

1
ANOPOW FOR REPLICATED NONSTATIONARY TIME SERIES IN EXPERIMENTS.实验中用于复制非平稳时间序列的ANOPOW
Ann Appl Stat. 2024 Mar;18(1):328-349. doi: 10.1214/23-aoas1791. Epub 2024 Jan 31.
2
Adaptive Bayesian Spectral Analysis of High-dimensional Nonstationary Time Series.高维非平稳时间序列的自适应贝叶斯谱分析
J Comput Graph Stat. 2021;30(3):794-807. doi: 10.1080/10618600.2020.1868305. Epub 2021 Mar 1.
4
Adaptive Bayesian Time-Frequency Analysis of Multivariate Time Series.多元时间序列的自适应贝叶斯时频分析
J Am Stat Assoc. 2019;114(525):453-465. doi: 10.1080/01621459.2017.1415908. Epub 2018 Jul 9.
5
Functional mixed effects spectral analysis.功能混合效应光谱分析
Biometrika. 2011 Sep;98(3):583-598. doi: 10.1093/biomet/asr032.
6
State-space multitaper time-frequency analysis.状态空间多谱勒时频分析。
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):E5-E14. doi: 10.1073/pnas.1702877115. Epub 2017 Dec 18.

本文引用的文献

4
Adaptive Bayesian Time-Frequency Analysis of Multivariate Time Series.多元时间序列的自适应贝叶斯时频分析
J Am Stat Assoc. 2019;114(525):453-465. doi: 10.1080/01621459.2017.1415908. Epub 2018 Jul 9.
8
Functional mixed effects spectral analysis.功能混合效应光谱分析
Biometrika. 2011 Sep;98(3):583-598. doi: 10.1093/biomet/asr032.
9
Why the Diagnosis of Attention Deficit Hyperactivity Disorder Matters.为什么注意缺陷多动障碍的诊断很重要。
Front Psychiatry. 2015 Nov 26;6:168. doi: 10.3389/fpsyt.2015.00168. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验