Liang Jia-Yan, Zhang Xu-Dong, Zeng Xian-Xiang, Yan Min, Yin Ya-Xia, Xin Sen, Wang Wen-Peng, Wu Xiong-Wei, Shi Ji-Lei, Wan Li-Jun, Guo Yu-Guo
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence inMolecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMs), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China.
Angew Chem Int Ed Engl. 2020 Apr 16;59(16):6585-6589. doi: 10.1002/anie.201916301. Epub 2020 Feb 28.
A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni-rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space-charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high-voltage Li-metal batteries, innovating the design philosophy of functional CEI strategy for future high-energy-density batteries.
一种具有卓越安全性的混合固液电解质有助于高能密度存储设备的实现,但它与阴极的化学兼容性较差。在此,引入了一种最佳的二氟草酸硼酸锂盐,以在富镍阴极和混合电解质之间原位构建非晶态阴极电解质界面(CEI)。该CEI保持了具有高兼容性的表面结构,从而增强了界面稳定性。同时,通过协调化学势,可在固/固界面显著减轻空间电荷层,如COMSOL模拟所示,获得促进的界面动力学。因此,非晶态CEI兼具双功能,在高压锂金属电池中提供了出色的循环稳定性、高库仑效率和良好的倍率性能,为未来高能密度电池创新了功能性CEI策略的设计理念。