Bishara Fady, Paul Ayan, Dy Jennifer
Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA.
Sci Rep. 2024 Mar 4;14(1):5294. doi: 10.1038/s41598-024-52941-4.
Monte Carlo simulations of physics processes at particle colliders like the Large Hadron Collider at CERN take up a major fraction of the computational budget. For some simulations, a single data point takes seconds, minutes, or even hours to compute from first principles. Since the necessary number of data points per simulation is on the order of - , machine learning regressors can be used in place of physics simulators to significantly reduce this computational burden. However, this task requires high-precision regressors that can deliver data with relative errors of less than 1% or even 0.1% over the entire domain of the function. In this paper, we develop optimal training strategies and tune various machine learning regressors to satisfy the high-precision requirement. We leverage symmetry arguments from particle physics to optimize the performance of the regressors. Inspired by ResNets, we design a Deep Neural Network with skip connections that outperform fully connected Deep Neural Networks. We find that at lower dimensions, boosted decision trees far outperform neural networks while at higher dimensions neural networks perform significantly better. We show that these regressors can speed up simulations by a factor of - over the first-principles computations currently used in Monte Carlo simulations. Additionally, using symmetry arguments derived from particle physics, we reduce the number of regressors necessary for each simulation by an order of magnitude. Our work can significantly reduce the training and storage burden of Monte Carlo simulations at current and future collider experiments.
在诸如欧洲核子研究组织的大型强子对撞机等粒子对撞机上,对物理过程进行蒙特卡罗模拟占据了计算预算的很大一部分。对于某些模拟,从第一原理计算出单个数据点需要数秒、数分钟甚至数小时。由于每次模拟所需的数据点数约为 - ,因此可以使用机器学习回归器来替代物理模拟器,从而显著减轻这种计算负担。然而,这项任务需要高精度的回归器,能够在函数的整个定义域内提供相对误差小于1%甚至0.1%的数据。在本文中,我们开发了最优训练策略并调整各种机器学习回归器以满足高精度要求。我们利用粒子物理学中的对称性论据来优化回归器的性能。受残差网络(ResNets)的启发,我们设计了一种带有跳跃连接的深度神经网络,其性能优于全连接深度神经网络。我们发现,在较低维度下,提升决策树的性能远远优于神经网络,而在较高维度下,神经网络的表现则显著更好。我们表明,这些回归器可以比目前蒙特卡罗模拟中使用的第一原理计算将模拟速度提高 - 倍。此外,利用从粒子物理学中推导出来的对称性论据,我们将每次模拟所需的回归器数量减少了一个数量级。我们的工作可以显著减轻当前和未来对撞机实验中蒙特卡罗模拟的训练和存储负担。