Department of Structural and Functional Biology, Laboratory of Nerve Regeneration, Institute of Biology, University of Campinas, Campinas, 13083-862, SP, Brazil.
Biomedical Research Center, Medical Institute of Sumy State University, Sumy, 40018, Ukraine.
Stem Cell Res Ther. 2024 Mar 5;15(1):63. doi: 10.1186/s13287-024-03676-6.
Spinal ventral root avulsion results in massive motoneuron degeneration with poor prognosis and high costs. In this study, we compared different isoforms of basic fibroblast growth factor 2 (FGF2), overexpressed in stably transfected Human embryonic stem cells (hESCs), following motor root avulsion and repair with a heterologous fibrin biopolymer (HFB).
In the present work, hESCs bioengineered to overexpress 18, 23, and 31 kD isoforms of FGF2, were used in combination with reimplantation of the avulsed roots using HFB. Statistical analysis was conducted using GraphPad Prism software with one-way or two-way ANOVA, followed by Tukey's or Dunnett's multiple comparison tests. Significance was set at *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
For the first set of experiments, rats underwent avulsion of the ventral roots with local administration of HFB and engraftment of hESCs expressing the above-mentioned FGF2 isoforms. Analysis of motoneuron survival, glial reaction, and synaptic coverage, two weeks after the lesion, indicated that therapy with hESCs overexpressing 31 kD FGF2 was the most effective. Consequently, the second set of experiments was performed with that isoform, so that ventral root avulsion was followed by direct spinal cord reimplantation. Motoneuron survival, glial reaction, synaptic coverage, and gene expression were analyzed 2 weeks post-lesion; while the functional recovery was evaluated by the walking track test and von Frey test for 12 weeks. We showed that engraftment of hESCs led to significant neuroprotection, coupled with immunomodulation, attenuation of astrogliosis, and preservation of inputs to the rescued motoneurons. Behaviorally, the 31 kD FGF2 - hESC therapy enhanced both motor and sensory recovery.
Transgenic hESCs were an effective delivery platform for neurotrophic factors, rescuing axotomized motoneurons and modulating glial response after proximal spinal cord root injury, while the 31 kD isoform of FGF2 showed superior regenerative properties over other isoforms in addition to the significant functional recovery.
脊髓腹根撕脱会导致大量运动神经元变性,预后差,成本高。在这项研究中,我们比较了稳定转染的人胚胎干细胞(hESC)中过表达的不同碱性成纤维细胞生长因子 2(FGF2)同工型,这些细胞在使用异源纤维蛋白生物聚合物(HFB)修复运动神经根撕脱后。
在本工作中,使用生物工程过表达 18、23 和 31 kD 同工型 FGF2 的 hESC,并与 HFB 重新植入撕脱的根结合使用。使用 GraphPad Prism 软件进行统计分析,采用单因素或双因素方差分析,然后进行 Tukey 或 Dunnett 多重比较检验。显著性设置为 *p < 0.05、**p < 0.01、***p < 0.001 和 ****p < 0.0001。
对于第一组实验,大鼠行腹根撕脱术,局部给予 HFB,并植入表达上述 FGF2 同工型的 hESC。损伤后 2 周时,对运动神经元存活、神经胶质反应和突触覆盖的分析表明,用过表达 31 kD FGF2 的 hESC 治疗最有效。因此,进行了第二组实验,用该同工型进行,即直接将腹根撕脱物重新植入脊髓。损伤后 2 周时分析运动神经元存活、神经胶质反应、突触覆盖和基因表达;而功能恢复则通过行走轨迹试验和 von Frey 试验进行 12 周评估。我们表明,hESC 植入可显著促进神经保护,同时还可调节免疫反应、减弱星形胶质细胞增生,并保留对获救运动神经元的输入。行为上,31 kD FGF2-hESC 治疗增强了运动和感觉恢复。
转基因 hESC 是一种有效的神经营养因子传递平台,可挽救轴突切断的运动神经元,并调节近端脊髓根损伤后的神经胶质反应,而 FGF2 的 31 kD 同工型除了具有显著的功能恢复外,还具有比其他同工型更好的再生特性。