Luppi Bruno T, Primrose William L, Hudson Zachary M
Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
Angew Chem Int Ed Engl. 2024 Apr 22;63(17):e202400712. doi: 10.1002/anie.202400712. Epub 2024 Mar 21.
By combining bioimaging and photodynamic therapy (PDT), it is possible to treat cancer through a theranostic approach with targeted action for minimum invasiveness and side effects. Thermally activated delayed fluorescence (TADF) probes have gained recent interest in theranostics due to their ability to generate singlet oxygen (O) while providing delayed emission that can be used in time-gated imaging. However, it is still challenging to design systems that simultaneously show (1) high contrast for imaging, (2) low dark toxicity but high phototoxicity and (3) tunable biological uptake. Here, we circumvent shortcomings of TADF systems by designing block copolymers and their corresponding semiconducting polymer dots (Pdots) that encapsulate a TADF dye in the core and expose an additional boron-dipyrromethene (BODIPY) oxygen sensitizer in the corona. This architecture provides orange-red luminescent particles (Φ up to 18 %) that can efficiently promote PDT (O QY=42 %) of HeLa cells with very low photosensitizer loading (IC ~0.05-0.13 μg/mL after 30 min). Additionally, we design Pdots with tunable cellular uptake but similar PDT efficiencies using either polyethylene glycol or guanidinium-based coronas. Finally, we demonstrate that these Pdots can be used for time-gated imaging to effectively filter out background fluorescence from biological samples and improve image contrast.
通过将生物成像与光动力疗法(PDT)相结合,可以采用一种治疗诊断方法来治疗癌症,实现靶向作用,将侵入性和副作用降至最低。热激活延迟荧光(TADF)探针由于能够产生单线态氧(O),同时提供可用于时间门控成像的延迟发射,最近在治疗诊断领域受到关注。然而,设计同时具备以下特性的系统仍然具有挑战性:(1)成像对比度高;(2)暗毒性低但光毒性高;(3)生物摄取可调节。在此,我们通过设计嵌段共聚物及其相应的半导体聚合物点(Pdots)来克服TADF系统的缺点,这些聚合物点在核心封装了一种TADF染料,并在冠层暴露了一种额外的硼二吡咯亚甲基(BODIPY)氧敏化剂。这种结构提供了橙红色发光颗粒(Φ高达18%),在极低的光敏剂负载量下(30分钟后IC约为0.05 - 0.13μg/mL)就能有效促进HeLa细胞的光动力疗法(O量子产率=42%)。此外,我们使用聚乙二醇或基于胍的冠层设计了具有可调节细胞摄取但光动力疗法效率相似的Pdots。最后,我们证明这些Pdots可用于时间门控成像,以有效滤除生物样品的背景荧光并提高图像对比度。