Suppr超能文献

理解数值求解器对微分方程模型推断的影响。

Understanding the impact of numerical solvers on inference for differential equation models.

机构信息

Department of Computer Science, University of Oxford, Oxford, Oxfordshire, UK.

Department of Statistics, University of Oxford, Oxford, Oxfordshire, UK.

出版信息

J R Soc Interface. 2024 Mar;21(212):20230369. doi: 10.1098/rsif.2023.0369. Epub 2024 Mar 6.

Abstract

Most ordinary differential equation (ODE) models used to describe biological or physical systems must be solved approximately using numerical methods. Perniciously, even those solvers that seem sufficiently accurate for the , i.e. for obtaining an accurate simulation, might not be sufficiently accurate for the , i.e. for inferring the model parameters from data. We show that for both fixed step and adaptive step ODE solvers, solving the forward problem with insufficient accuracy can distort likelihood surfaces, which might become jagged, causing inference algorithms to get stuck in local 'phantom' optima. We demonstrate that biases in inference arising from numerical approximation of ODEs are potentially most severe in systems involving low noise and rapid nonlinear dynamics. We reanalyse an ODE change point model previously fit to the COVID-19 outbreak in Germany and show the effect of the step size on simulation and inference results. We then fit a more complicated rainfall run-off model to hydrological data and illustrate the importance of tuning solver tolerances to avoid distorted likelihood surfaces. Our results indicate that, when performing inference for ODE model parameters, adaptive step size solver tolerances must be set cautiously and likelihood surfaces should be inspected for characteristic signs of numerical issues.

摘要

大多数用于描述生物或物理系统的常微分方程 (ODE) 模型都必须使用数值方法进行近似求解。不幸的是,即使那些对于 来说似乎足够准确的求解器,即用于获得准确模拟的求解器,也可能对于 来说不够准确,即用于从数据推断模型参数。我们表明,对于固定步长和自适应步长 ODE 求解器,以不充分的精度求解正向问题会扭曲似然面,这可能会变得参差不齐,导致推理算法卡在局部的“虚拟”最优解中。我们证明了由于 ODE 的数值逼近而产生的推理偏差在涉及低噪声和快速非线性动力学的系统中可能最为严重。我们重新分析了先前拟合德国 COVID-19 爆发的 ODE 变点模型,并展示了步长对模拟和推理结果的影响。然后,我们将一个更复杂的降雨径流模型拟合到水文数据上,并说明了调整求解器公差以避免扭曲似然面的重要性。我们的结果表明,在对 ODE 模型参数进行推理时,必须谨慎设置自适应步长求解器公差,并应检查似然面是否存在数值问题的特征迹象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feff/10914510/076b811fefc4/rsif20230369f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验