Miao Hongyu, Wu Hulin, Xue Hongqi
J Am Stat Assoc. 2014 Oct;109(508):1672-1682. doi: 10.1080/01621459.2014.957287.
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
现有的常微分方程(ODE)模型估计方法不适用于离散数据。因此,首次提出并研究了广义常微分方程(GODE)模型。我们为GODE模型开发了基于似然的参数估计和推断方法。我们提出了稳健的计算算法,并通过考虑求解ODE时的测量误差和数值误差,严格研究了所提出估计量的渐近性质。我们方法的模拟研究以及在流感病毒动力学研究中的应用表明,与现有的ODE模型估计方法和基于扩展平滑(ESB)的方法相比,所提出的方法在准确性方面具有卓越的性能。