Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA.
Department of Medicine, Ring Road State Hospital, Ibadan, Nigeria.
Genome Med. 2024 Mar 5;16(1):38. doi: 10.1186/s13073-024-01308-5.
Type 2 diabetes (T2D) has reached epidemic proportions globally, including in Africa. However, molecular studies to understand the pathophysiology of T2D remain scarce outside Europe and North America. The aims of this study are to use an untargeted metabolomics approach to identify: (a) metabolites that are differentially expressed between individuals with and without T2D and (b) a metabolic signature associated with T2D in a population of Sub-Saharan Africa (SSA).
A total of 580 adult Nigerians from the Africa America Diabetes Mellitus (AADM) study were studied. The discovery study included 310 individuals (210 without T2D, 100 with T2D). Metabolites in plasma were assessed by reverse phase, ultra-performance liquid chromatography and mass spectrometry (RP)/UPLC-MS/MS methods on the Metabolon Platform. Welch's two-sample t-test was used to identify differentially expressed metabolites (DEMs), followed by the construction of a biomarker panel using a random forest (RF) algorithm. The biomarker panel was evaluated in a replication sample of 270 individuals (110 without T2D and 160 with T2D) from the same study.
Untargeted metabolomic analyses revealed 280 DEMs between individuals with and without T2D. The DEMs predominantly belonged to the lipid (51%, 142/280), amino acid (21%, 59/280), xenobiotics (13%, 35/280), carbohydrate (4%, 10/280) and nucleotide (4%, 10/280) super pathways. At the sub-pathway level, glycolysis, free fatty acid, bile metabolism, and branched chain amino acid catabolism were altered in T2D individuals. A 10-metabolite biomarker panel including glucose, gluconate, mannose, mannonate, 1,5-anhydroglucitol, fructose, fructosyl-lysine, 1-carboxylethylleucine, metformin, and methyl-glucopyranoside predicted T2D with an area under the curve (AUC) of 0.924 (95% CI: 0.845-0.966) and a predicted accuracy of 89.3%. The panel was validated with a similar AUC (0.935, 95% CI 0.906-0.958) in the replication cohort. The 10 metabolites in the biomarker panel correlated significantly with several T2D-related glycemic indices, including Hba1C, insulin resistance (HOMA-IR), and diabetes duration.
We demonstrate that metabolomic dysregulation associated with T2D in Nigerians affects multiple processes, including glycolysis, free fatty acid and bile metabolism, and branched chain amino acid catabolism. Our study replicated previous findings in other populations and identified a metabolic signature that could be used as a biomarker panel of T2D risk and glycemic control thus enhancing our knowledge of molecular pathophysiologic changes in T2D. The metabolomics dataset generated in this study represents an invaluable addition to publicly available multi-omics data on understudied African ancestry populations.
2 型糖尿病(T2D)在全球范围内已达到流行程度,包括在非洲。然而,在欧洲和北美以外,用于了解 T2D 病理生理学的分子研究仍然很少。本研究的目的是使用非靶向代谢组学方法来确定:(a)在有和没有 T2D 的个体之间差异表达的代谢物,以及(b)与撒哈拉以南非洲(SSA)人群中的 T2D 相关的代谢特征。
共有来自非洲美国糖尿病研究(AADM)的 580 名成年尼日利亚人参与了这项研究。发现研究包括 310 名个体(210 名无 T2D,100 名有 T2D)。通过反相、超高效液相色谱和质谱(RP)/UPLC-MS/MS 方法在代谢组学平台上评估血浆中的代谢物。使用 Welch 两样本 t 检验来鉴定差异表达的代谢物(DEMs),然后使用随机森林(RF)算法构建生物标志物面板。该生物标志物面板在来自同一研究的 270 名个体(110 名无 T2D 和 160 名有 T2D)的复制样本中进行了评估。
非靶向代谢组学分析显示,有和无 T2D 的个体之间有 280 个 DEM。DEMs 主要属于脂质(51%,142/280)、氨基酸(21%,59/280)、外源性物质(13%,35/280)、碳水化合物(4%,10/280)和核苷酸(4%,10/280)超级途径。在亚途径水平上,糖酵解、游离脂肪酸、胆汁代谢和支链氨基酸分解代谢在 T2D 个体中发生改变。一个包括葡萄糖、葡萄糖酸盐、甘露糖、甘露酸盐、1,5-脱水葡萄糖醇、果糖、果糖基-赖氨酸、1-羧乙基亮氨酸、二甲双胍和甲基-β-D-吡喃葡萄糖苷的 10 个代谢物生物标志物面板,预测 T2D 的曲线下面积(AUC)为 0.924(95%CI:0.845-0.966),预测准确率为 89.3%。该面板在复制队列中具有类似的 AUC(0.935,95%CI 0.906-0.958),得到了验证。生物标志物面板中的 10 种代谢物与 Hba1C、胰岛素抵抗(HOMA-IR)和糖尿病持续时间等多种与 T2D 相关的血糖指数显著相关。
我们证明,与尼日利亚人 T2D 相关的代谢失调影响多个过程,包括糖酵解、游离脂肪酸和胆汁代谢以及支链氨基酸分解代谢。我们的研究在其他人群中复制了以前的发现,并确定了一个代谢特征,可以用作 T2D 风险和血糖控制的生物标志物面板,从而增强了我们对 T2D 分子病理生理变化的认识。本研究生成的代谢组学数据集是对研究较少的非洲血统人群的公共多组学数据的宝贵补充。