Zhang Fan, Lu Qiang, Li Jiachen, Zhang Qiongyue, Yu Haotian, Wang Yahao, Li Jinrui, Ren Haodong, Liang Huirong, Shen Fei, Han Xiaogang
School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030000, China.
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Materials (Basel). 2025 Aug 29;18(17):4058. doi: 10.3390/ma18174058.
Lithium-iron disulfide (Li-FeS) batteries are plagued by the polysulfide shuttle effect and cathode structural degradation, which significantly hinder their practical application. This study proposes a dual-strategy design that combines a polyacrylonitrile-carbon nanotube (PAN-CNT) composite cathode and a polyvinylidene fluoride (PVDF)-conductive carbon-coated separator to synergistically address these bottlenecks. The PAN-CNT binder establishes chemical anchoring between polyacrylonitrile and FeS, enhancing electronic conductivity and mitigating volume expansion. Specifically, the binder boosts the initial discharge capacity by 35% while alleviating the stress-induced pulverization associated with volume changes. Meanwhile, the PVDF-conductive carbon-coated separator enables effective polysulfide trapping via dipole-dipole interactions between PVDF's polar C-F groups and LiS species while maintaining unobstructed ion transport with an ionic conductivity of 1.23 × 10 S cm, achieving a Coulombic efficiency of 99.2%. The electrochemical results demonstrate that the dual-modified battery delivers a high initial discharge capacity of 650 mAh g at 0.5 C, with a capacity retention rate of 61.5% after 120 cycles, significantly outperforming the control group's 47.5% retention rate. Scanning electron microscopy and electrochemical impedance spectroscopy confirm that this synergistic design suppresses polysulfide migration and enhances interfacial stability, reducing the charge transfer resistance from 26 Ω to 11 Ω. By integrating polymer-based functional materials, this work presents a scalable and cost-effective approach for developing high-energy-density Li-FeS batteries, providing a practical pathway to overcome key challenges in their commercialization.
锂 - 二硫化铁(Li-FeS)电池受到多硫化物穿梭效应和阴极结构退化的困扰,这严重阻碍了它们的实际应用。本研究提出了一种双策略设计,将聚丙烯腈 - 碳纳米管(PAN-CNT)复合阴极与聚偏氟乙烯(PVDF) - 导电碳涂层隔膜相结合,以协同解决这些瓶颈问题。PAN-CNT粘结剂在聚丙烯腈和FeS之间建立化学锚固,提高电子导电性并减轻体积膨胀。具体而言,该粘结剂使初始放电容量提高了35%,同时减轻了与体积变化相关的应力诱导粉碎。与此同时,PVDF - 导电碳涂层隔膜通过PVDF的极性C - F基团与LiS物种之间的偶极 - 偶极相互作用实现有效的多硫化物捕获,同时保持离子传输畅通,离子电导率为1.23×10 S cm,库仑效率达到99.2%。电化学结果表明,双改性电池在0.5 C下具有650 mAh g的高初始放电容量,120次循环后容量保持率为61.5%,明显优于对照组47.5%的保持率。扫描电子显微镜和电化学阻抗谱证实,这种协同设计抑制了多硫化物迁移并增强了界面稳定性,并将电荷转移电阻从26 Ω降低到11 Ω。通过整合基于聚合物的功能材料,这项工作提出了一种可扩展且具有成本效益的方法来开发高能量密度的Li-FeS电池,为克服其商业化中的关键挑战提供了一条切实可行的途径。