Suppr超能文献

DVA:预测单核苷酸错义变异对功能的影响。

DVA: predicting the functional impact of single nucleotide missense variants.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology Harbin, Harbin, Heilongjiang, China.

Cumming School of Medicine, University of Calgary, Calgary, Canada.

出版信息

BMC Bioinformatics. 2024 Mar 6;25(Suppl 1):100. doi: 10.1186/s12859-024-05709-6.

Abstract

BACKGROUND

In the past decade, single nucleotide variants (SNVs) have been identified as having a significant relationship with the development and treatment of diseases. Among them, prioritizing missense variants for further functional impact investigation is an essential challenge in the study of common disease and cancer. Although several computational methods have been developed to predict the functional impacts of variants, the predictive ability of these methods is still insufficient in the Mendelian and cancer missense variants.

RESULTS

We present a novel prediction method called the disease-related variant annotation (DVA) method that predicts the effect of missense variants based on a comprehensive feature set of variants, notably, the allele frequency and protein-protein interaction network feature based on graph embedding. Benchmarked against datasets of single nucleotide missense variants, the DVA method outperforms the state-of-the-art methods by up to 0.473 in the area under receiver operating characteristic curve. The results demonstrate that the proposed method can accurately predict the functional impact of single nucleotide missense variants and substantially outperforms existing methods.

CONCLUSIONS

DVA is an effective framework for identifying the functional impact of disease missense variants based on a comprehensive feature set. Based on different datasets, DVA shows its generalization ability and robustness, and it also provides innovative ideas for the study of the functional mechanism and impact of SNVs.

摘要

背景

在过去的十年中,单核苷酸变异(SNVs)已被确定与疾病的发生和治疗有显著关系。其中,优先对错义变异进行进一步的功能影响研究是常见疾病和癌症研究中的一个重要挑战。尽管已经开发了几种计算方法来预测变异的功能影响,但这些方法在孟德尔和癌症错义变异中的预测能力仍然不足。

结果

我们提出了一种名为疾病相关变异注释(DVA)的新预测方法,该方法基于变异的综合特征集来预测错义变异的效应,特别是基于图嵌入的等位基因频率和蛋白质-蛋白质相互作用网络特征。与单核苷酸错义变异数据集进行基准测试,DVA 方法在接收器操作特征曲线下面积方面的表现优于最先进的方法,最高可达 0.473。结果表明,所提出的方法可以准确预测单核苷酸错义变异的功能影响,并且大大优于现有方法。

结论

DVA 是一种基于综合特征集识别疾病错义变异功能影响的有效框架。基于不同的数据集,DVA 展示了其泛化能力和鲁棒性,为 SNVs 的功能机制和影响研究提供了创新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6208/10916336/5869a00feb5b/12859_2024_5709_Fig1_HTML.jpg

相似文献

1
DVA: predicting the functional impact of single nucleotide missense variants.
BMC Bioinformatics. 2024 Mar 6;25(Suppl 1):100. doi: 10.1186/s12859-024-05709-6.
2
DARVIC: Dihedral angle-reliant variant impact classifier for functional prediction of missense VUS.
Comput Methods Programs Biomed. 2023 Aug;238:107596. doi: 10.1016/j.cmpb.2023.107596. Epub 2023 May 11.
3
Identifying Mendelian disease genes with the variant effect scoring tool.
BMC Genomics. 2013;14 Suppl 3(Suppl 3):S3. doi: 10.1186/1471-2164-14-S3-S3. Epub 2013 May 28.
5
Performance of mutation pathogenicity prediction tools on missense variants associated with 46,XY differences of sex development.
Clinics (Sao Paulo). 2021 Jan 22;76:e2052. doi: 10.6061/clinics/2021/e2052. eCollection 2021.
6
ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants.
Am J Hum Genet. 2018 Oct 4;103(4):474-483. doi: 10.1016/j.ajhg.2018.08.005. Epub 2018 Sep 13.

本文引用的文献

1
A comparison on predicting functional impact of genomic variants.
NAR Genom Bioinform. 2022 Jan 14;4(1):lqab122. doi: 10.1093/nargab/lqab122. eCollection 2022 Mar.
3
Parkes Weber syndrome associated with two somatic pathogenic variants in .
Cold Spring Harb Mol Case Stud. 2020 Aug 25;6(4). doi: 10.1101/mcs.a005256. Print 2020 Aug.
4
MISTIC: A prediction tool to reveal disease-relevant deleterious missense variants.
PLoS One. 2020 Jul 31;15(7):e0236962. doi: 10.1371/journal.pone.0236962. eCollection 2020.
5
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
7
CADD: predicting the deleteriousness of variants throughout the human genome.
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894. doi: 10.1093/nar/gky1016.
8
ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants.
Am J Hum Genet. 2018 Oct 4;103(4):474-483. doi: 10.1016/j.ajhg.2018.08.005. Epub 2018 Sep 13.
9
Predicting the clinical impact of human mutation with deep neural networks.
Nat Genet. 2018 Aug;50(8):1161-1170. doi: 10.1038/s41588-018-0167-z. Epub 2018 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验