Suppr超能文献

MISTIC:一种预测工具,可揭示与疾病相关的有害错义变异。

MISTIC: A prediction tool to reveal disease-relevant deleterious missense variants.

机构信息

Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory - CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France.

Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France.

出版信息

PLoS One. 2020 Jul 31;15(7):e0236962. doi: 10.1371/journal.pone.0236962. eCollection 2020.

Abstract

The diffusion of next-generation sequencing technologies has revolutionized research and diagnosis in the field of rare Mendelian disorders, notably via whole-exome sequencing (WES). However, one of the main issues hampering achievement of a diagnosis via WES analyses is the extended list of variants of unknown significance (VUS), mostly composed of missense variants. Hence, improved solutions are needed to address the challenges of identifying potentially deleterious variants and ranking them in a prioritized short list. We present MISTIC (MISsense deleTeriousness predICtor), a new prediction tool based on an original combination of two complementary machine learning algorithms using a soft voting system that integrates 113 missense features, ranging from multi-ethnic minor allele frequencies and evolutionary conservation, to physiochemical and biochemical properties of amino acids. Our approach also uses training sets with a wide spectrum of variant profiles, including both high-confidence positive (deleterious) and negative (benign) variants. Compared to recent state-of-the-art prediction tools in various benchmark tests and independent evaluation scenarios, MISTIC exhibits the best and most consistent performance, notably with the highest AUC value (> 0.95). Importantly, MISTIC maintains its high performance in the specific case of discriminating deleterious variants from benign variants that are rare or population-specific. In a clinical context, MISTIC drastically reduces the list of VUS (<30%) and significantly improves the ranking of "causative" deleterious variants. Pre-computed MISTIC scores for all possible human missense variants are available at http://lbgi.fr/mistic.

摘要

下一代测序技术的普及彻底改变了罕见孟德尔疾病领域的研究和诊断,特别是通过全外显子组测序(WES)。然而,通过 WES 分析进行诊断的主要问题之一是未知意义的变体(VUS)的扩展列表,其中大多数由错义变体组成。因此,需要改进解决方案来解决识别潜在有害变体并将其在优先短名单中排名的挑战。我们提出了 MISTIC(MISsense deleTeriousness predICtor),这是一种新的预测工具,基于两种互补的机器学习算法的原始组合,使用软投票系统,该系统集成了 113 种错义特征,范围从多民族的次要等位基因频率和进化保守性到氨基酸的物理化学和生化特性。我们的方法还使用了具有广泛变异谱的训练集,包括高可信度的阳性(有害)和阴性(良性)变体。与各种基准测试和独立评估场景中的最新最先进的预测工具相比,MISTIC 表现出最佳和最一致的性能,尤其是 AUC 值最高(>0.95)。重要的是,MISTIC 在区分稀有或特定于人群的良性变体与有害变体的特定情况下保持高性能。在临床环境中,MISTIC 大大减少了 VUS(<30%)的列表,并显著提高了“因果”有害变体的排名。所有可能的人类错义变体的预计算 MISTIC 分数可在 http://lbgi.fr/mistic 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c5e/7394404/211bc15055aa/pone.0236962.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验