文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对比增强 CT 放射组学术前预测上皮性卵巢癌分期:一项多中心研究。

Contrast-enhanced CT radiomics for preoperative prediction of stage in epithelial ovarian cancer: a multicenter study.

机构信息

Department of Radiology, the Second Affiliated Hospital of Nanchang University, Minde Road No. 1, 330006, Nanchang, Jiangxi Province, China.

Department of Radiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China.

出版信息

BMC Cancer. 2024 Mar 6;24(1):307. doi: 10.1186/s12885-024-12037-8.


DOI:10.1186/s12885-024-12037-8
PMID:38448945
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10916071/
Abstract

BACKGROUND: Preoperative prediction of International Federation of Gynecology and Obstetrics (FIGO) stage in patients with epithelial ovarian cancer (EOC) is crucial for determining appropriate treatment strategy. This study aimed to explore the value of contrast-enhanced CT (CECT) radiomics in predicting preoperative FIGO staging of EOC, and to validate the stability of the model through an independent external dataset. METHODS: A total of 201 EOC patients from three centers, divided into a training cohort (n = 106), internal (n = 46) and external (n = 49) validation cohorts. The least absolute shrinkage and selection operator (LASSO) regression algorithm was used for screening radiomics features. Five machine learning algorithms, namely logistic regression, support vector machine, random forest, light gradient boosting machine (LightGBM), and decision tree, were utilized in developing the radiomics model. The optimal performing algorithm was selected to establish the radiomics model, clinical model, and the combined model. The diagnostic performances of the models were evaluated through receiver operating characteristic analysis, and the comparison of the area under curves (AUCs) were conducted using the Delong test or F-test. RESULTS: Seven optimal radiomics features were retained by the LASSO algorithm. The five radiomics models demonstrate that the LightGBM model exhibits notable prediction efficiency and robustness, as evidenced by AUCs of 0.83 in the training cohort, 0.80 in the internal validation cohort, and 0.68 in the external validation cohort. The multivariate logistic regression analysis indicated that carcinoma antigen 125 and tumor location were identified as independent predictors for the FIGO staging of EOC. The combined model exhibited best diagnostic efficiency, with AUCs of 0.95 in the training cohort, 0.83 in the internal validation cohort, and 0.79 in the external validation cohort. The F-test indicated that the combined model exhibited a significantly superior AUC value compared to the radiomics model in the training cohort (P < 0.001). CONCLUSIONS: The combined model integrating clinical characteristics and radiomics features shows potential as a non-invasive adjunctive diagnostic modality for preoperative evaluation of the FIGO staging status of EOC, thereby facilitating clinical decision-making and enhancing patient outcomes.

摘要

背景:预测上皮性卵巢癌(EOC)患者的国际妇产科联合会(FIGO)分期对于确定适当的治疗策略至关重要。本研究旨在探讨对比增强 CT(CECT)放射组学在预测 EOC 术前 FIGO 分期中的价值,并通过独立的外部数据集验证模型的稳定性。

方法:本研究纳入了来自三个中心的 201 名 EOC 患者,分为训练队列(n=106)、内部验证队列(n=46)和外部验证队列(n=49)。采用最小绝对值收缩和选择算子(LASSO)回归算法筛选放射组学特征。采用逻辑回归、支持向量机、随机森林、LightGBM 和决策树五种机器学习算法建立放射组学模型。选择最佳表现算法建立放射组学模型、临床模型和联合模型。采用受试者工作特征分析评估模型的诊断性能,并采用 Delong 检验或 F 检验比较曲线下面积(AUC)。

结果:LASSO 算法筛选出 7 个最优放射组学特征。五个放射组学模型中,LightGBM 模型表现出较高的预测效率和稳健性,在训练队列、内部验证队列和外部验证队列中的 AUC 分别为 0.83、0.80 和 0.68。多因素 logistic 回归分析表明,癌抗原 125 和肿瘤位置是 EOC FIGO 分期的独立预测因素。联合模型具有最佳的诊断效率,在训练队列、内部验证队列和外部验证队列中的 AUC 分别为 0.95、0.83 和 0.79。F 检验表明,在训练队列中,联合模型的 AUC 值显著优于放射组学模型(P<0.001)。

结论:联合临床特征和放射组学特征的模型有望成为 EOC 术前 FIGO 分期评估的非侵入性辅助诊断方法,从而为临床决策提供支持,改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/a92dea6ea2ec/12885_2024_12037_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/23c7e2079adb/12885_2024_12037_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/c5d54f4bf774/12885_2024_12037_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/c4a308b800f3/12885_2024_12037_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/047f92ee1169/12885_2024_12037_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/a92dea6ea2ec/12885_2024_12037_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/23c7e2079adb/12885_2024_12037_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/c5d54f4bf774/12885_2024_12037_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/c4a308b800f3/12885_2024_12037_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/047f92ee1169/12885_2024_12037_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b7c/10916071/a92dea6ea2ec/12885_2024_12037_Fig5_HTML.jpg

相似文献

[1]
Contrast-enhanced CT radiomics for preoperative prediction of stage in epithelial ovarian cancer: a multicenter study.

BMC Cancer. 2024-3-6

[2]
Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study.

Acad Radiol. 2024-4

[3]
Development and validation of radiomics nomogram for metastatic status of epithelial ovarian cancer.

Sci Rep. 2024-5-30

[4]
Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers.

Eur Radiol. 2023-7

[5]
CT-Based Radiomics for the Preoperative Prediction of Occult Peritoneal Metastasis in Epithelial Ovarian Cancers.

Acad Radiol. 2024-5

[6]
Machine learning-based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models.

Med Phys. 2024-9

[7]
Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study.

Acad Radiol. 2024-5

[8]
Deep Learning Radiomics Nomogram Based on Magnetic Resonance Imaging for Differentiating Type I/II Epithelial Ovarian Cancer.

Acad Radiol. 2024-6

[9]
Application of a combined radiomics nomogram based on CE-CT in the preoperative prediction of thymomas risk categorization.

Front Oncol. 2022-8-23

[10]
Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.

Front Endocrinol (Lausanne). 2021

引用本文的文献

[1]
Machine learning in ovarian cancer: a bibliometric and visual analysis from 2004 to 2024.

Discov Oncol. 2025-5-13

[2]
An interpretable machine learning model based on computed tomography radiomics for predicting programmed death ligand 1 expression status in gastric cancer.

Cancer Imaging. 2025-3-12

本文引用的文献

[1]
Computed Tomographic Radiomics in Differentiating Histologic Subtypes of Epithelial Ovarian Carcinoma.

JAMA Netw Open. 2022-12-1

[2]
CT radiomics nomogram for prediction of the Ki-67 index in head and neck squamous cell carcinoma.

Eur Radiol. 2023-3

[3]
Multi-parametric MRI-based radiomics signature for preoperative prediction of Ki-67 proliferation status in sinonasal malignancies: a two-centre study.

Eur Radiol. 2022-10

[4]
A multicenter study on the preoperative prediction of gastric cancer microsatellite instability status based on computed tomography radiomics.

Abdom Radiol (NY). 2022-6

[5]
A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma.

Neuroradiology. 2022-7

[6]
A CT-based radiomics nomogram for predicting early recurrence in patients with high-grade serous ovarian cancer.

Eur J Radiol. 2021-12

[7]
The Development and Validation of a CT-Based Radiomics Nomogram to Preoperatively Predict Lymph Node Metastasis in High-Grade Serous Ovarian Cancer.

Front Oncol. 2021-8-31

[8]
A radiomic nomogram based on arterial phase of CT for differential diagnosis of ovarian cancer.

Abdom Radiol (NY). 2021-6

[9]
Cancer Statistics, 2021.

CA Cancer J Clin. 2021-1

[10]
Updates and New Options in Advanced Epithelial Ovarian Cancer Treatment.

Obstet Gynecol. 2021-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索