Suppr超能文献

鉴定输卵管微生物群及其与卵巢癌的关系。

Identification of fallopian tube microbiota and its association with ovarian cancer.

机构信息

Department of Obstetrics and Gynecology, Stanford, United States.

Stanford Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, United States.

出版信息

Elife. 2024 Mar 7;12:RP89830. doi: 10.7554/eLife.89830.

Abstract

Investigating the human fallopian tube (FT) microbiota has significant implications for understanding the pathogenesis of ovarian cancer (OC). In this large prospective study, we collected swabs intraoperatively from the FT and other surgical sites as controls to profile the microbiota in the FT and to assess its relationship with OC. Eighty-one OC and 106 non-cancer patients were enrolled and 1001 swabs were processed for 16S rRNA gene PCR and sequencing. We identified 84 bacterial species that may represent the FT microbiota and found a clear shift in the microbiota of the OC patients when compared to the non-cancer patients. Of the top 20 species that were most prevalent in the FT of OC patients, 60% were bacteria that predominantly reside in the gastrointestinal tract, while 30% normally reside in the mouth. Serous carcinoma had higher prevalence of almost all 84 FT bacterial species compared to the other OC subtypes. The clear shift in the FT microbiota in OC patients establishes the scientific foundation for future investigation into the role of these bacteria in the pathogenesis of OC.

摘要

研究人类输卵管(FT)微生物群对了解卵巢癌(OC)的发病机制具有重要意义。在这项大型前瞻性研究中,我们在手术过程中从 FT 采集拭子,并从其他手术部位采集拭子作为对照,以分析 FT 中的微生物群,并评估其与 OC 的关系。共纳入 81 例 OC 患者和 106 例非癌症患者,共处理了 1001 个拭子进行 16S rRNA 基因 PCR 和测序。我们鉴定出 84 种可能代表 FT 微生物群的细菌物种,与非癌症患者相比,OC 患者的微生物群明显发生了变化。在 OC 患者 FT 中最常见的前 20 种物种中,有 60%是主要存在于胃肠道中的细菌,而 30%通常存在于口腔中。与其他 OC 亚型相比,浆液性癌中几乎所有 84 种 FT 细菌的患病率都更高。OC 患者 FT 微生物群的明显变化为进一步研究这些细菌在 OC 发病机制中的作用奠定了科学基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba8d/10942644/79eb440d8cf3/elife-89830-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验