Suppr超能文献

Determining optimal range of reduction rates for nitrogen fertilization based on responses of vegetable yield and nitrogen losses to reduced nitrogen fertilizer application.

机构信息

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China.

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.

出版信息

Sci Total Environ. 2024 May 10;924:171523. doi: 10.1016/j.scitotenv.2024.171523. Epub 2024 Mar 5.

Abstract

Vegetable production is commonly accompanied by high nitrogen fertilizer rates but low nitrogen use efficiency in China. Reduced fertilization has been frequently recommended in existing studies as an efficient measurement to avoid large amount of nutrient loss and subsequent nonpoint source pollution. However, the reported responses of vegetable yield and nitrogen losses to reduced fertilization rates varied in a large range, which has resulted into large uncertainties in the potential benefits of those recommended reduction rates. Thus, we constructed the relationship between responses of nitrogen losses and vegetable yield to reduced nitrogen fertilization rates to determine the optimal range of reduction rates for nitrogen fertilization in a proportional form based on data reported in literatures across China's mainland, and evaluated the roles of greenhouse, managing options, and vegetable species on the responses. The relationships were constructed separately for 4 subregions: Northern arid and semiarid, loess plateau regions (NSL), Temperate monsoon zone (TMZ), Southeast monsoon zone (SMZ), Southwest zone (SWZ). The optimal nitrogen fertilizer reduction range for the TMZ, SMZ and SWZ were 51 % to 67 %, 40 % to 66 % and 54 % to 80 %, respectively and no reduction for NSL. Vegetable yields were not be sacrificed when fertilizations were reduced within the optimal ranges. Greenhouse and managing options showed no significant effect on the responses of both vegetable yield and nitrogen losses by the optimal reduction range but vegetable species played a relatively important role on the responses of vegetable yield. This indicated that the optimal reduction rates can be effective on reducing nitrogen loss in both open-field and greenhouse conditions across China's mainland without extra managing options. Therefore, the optimal reduction rates can still serve as a good starting point for making regional plans of nitrogen reduction that help balancing the chasing of high vegetable yield and low nitrogen loss.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验