Suppr超能文献

一种利用临床和单核苷酸多态性(SNP)数据构建的宫颈癌多变量预测预警模型。

A multi-variable predictive warning model for cervical cancer using clinical and SNPs data.

作者信息

Li Xiangqin, Ning Ruoqi, Xiao Bing, Meng Silu, Sun Haiying, Fan Xinran, Li Shuang

机构信息

Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Front Med (Lausanne). 2024 Feb 22;11:1294230. doi: 10.3389/fmed.2024.1294230. eCollection 2024.

Abstract

INTRODUCTION

Cervical cancer is the fourth most common cancer among female worldwide. Early detection and intervention are essential. This study aims to construct an early predictive warning model for cervical cancer and precancerous lesions utilizing clinical data and simple nucleotide polymorphisms (SNPs).

METHODS

Clinical data and germline SNPs were collected from 472 participants. Univariate logistic regression, least absolute shrinkage selection operator (LASSO), and stepwise regression were performed to screen variables. Logistic regression (LR), support vector machine (SVM), random forest (RF), decision tree (DT), extreme gradient boosting(XGBoost) and neural network(NN) were applied to establish models. The receiver operating characteristic (ROC) curve was used to compare the models' efficiencies. The performance of models was validated using decision curve analysis (DCA).

RESULTS

The LR model, which included 6 SNPs and 2 clinical variables as independent risk factors for cervical carcinogenesis, was ultimately chosen as the most optimal model. The DCA showed that the LR model had a good clinical application.

DISCUSSION

The predictive model effectively foresees cervical cancer risk using clinical and SNP data, aiding in planning timely interventions. It provides a transparent tool for refining clinical decisions in cervical cancer management.

摘要

引言

宫颈癌是全球女性中第四大常见癌症。早期检测和干预至关重要。本研究旨在利用临床数据和单核苷酸多态性(SNP)构建宫颈癌及癌前病变的早期预测预警模型。

方法

收集了472名参与者的临床数据和种系SNP。进行单因素逻辑回归、最小绝对收缩选择算子(LASSO)和逐步回归以筛选变量。应用逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)、决策树(DT)、极端梯度提升(XGBoost)和神经网络(NN)建立模型。采用受试者工作特征(ROC)曲线比较模型效率。使用决策曲线分析(DCA)验证模型性能。

结果

最终选择包含6个SNP和2个临床变量作为宫颈癌发生独立危险因素的LR模型作为最优模型。DCA显示LR模型具有良好的临床应用价值。

讨论

该预测模型利用临床和SNP数据有效预见宫颈癌风险,有助于规划及时的干预措施。它为优化宫颈癌管理中的临床决策提供了一个透明工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/787d/10918689/c015957d4c87/fmed-11-1294230-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验