Grupo de Genética de Micobacterias, Departamento de Microbiología. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain.
CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
Nat Commun. 2024 Mar 9;15(1):2161. doi: 10.1038/s41467-024-46449-8.
Human and animal tuberculosis is caused by the Mycobacterium tuberculosis Complex (MTBC), which has evolved a genomic decay of cobalamin (vitamin B12) biosynthetic genes. Accordingly, and in sharp contrast to environmental, opportunistic and ancestor mycobacteria; we demonstrate that M. tuberculosis (Mtb), M. africanum, and animal-adapted lineages, lack endogenous production of cobalamin, yet they retain the capacity for exogenous uptake. A B12 anemic model in immunocompromised and immunocompetent mice, demonstrates improved survival, and lower bacteria in organs, in B12 anemic animals infected with Mtb relative to non-anemic controls. Conversely, no differences were observed between mice groups infected with M. canettii, an ancestor mycobacterium which retains cobalamin biosynthesis. Interrogation of the B12 transcriptome in three MTBC strains defined L-methionine synthesis by metE and metH genes as a key phenotype. Expression of metE is repressed by a cobalamin riboswitch, while MetH requires the cobalamin cofactor. Thus, deletion of metE predominantly attenuates Mtb in anemic mice; although inactivation of metH exclusively causes attenuation in non-anemic controls. Here, we show how sub-physiological levels of B12 in the host antagonizes Mtb virulence, and describe a yet unknown mechanism of host-pathogen cross-talk with implications for B12 anemic populations.
人类和动物结核病是由结核分枝杆菌复合群(MTBC)引起的,该菌群的钴胺素(维生素 B12)生物合成基因发生了基因组退化。因此,与环境、机会性和祖先分枝杆菌形成鲜明对比的是,我们证明结核分枝杆菌(Mtb)、非洲分枝杆菌和适应动物的谱系缺乏内源性钴胺素的产生,但它们保留了外源性摄取的能力。在免疫功能低下和免疫功能正常的小鼠的 B12 贫血模型中,与非贫血对照相比,感染 Mtb 的贫血动物的存活时间更长,器官中的细菌数量更少。相反,在感染祖先分枝杆菌 M. canettii 的小鼠组之间未观察到差异,该细菌保留了钴胺素生物合成。对三种 MTBC 菌株的 B12 转录组进行分析,确定 L-蛋氨酸合成由 metE 和 metH 基因决定为关键表型。metE 的表达受钴胺素核糖开关的抑制,而 MetH 需要钴胺素辅因子。因此,metE 的缺失主要在贫血小鼠中减弱 Mtb 的毒力;尽管 metH 的失活仅在非贫血对照中引起衰减。在这里,我们展示了宿主中低于生理水平的 B12 如何拮抗 Mtb 的毒力,并描述了一种宿主-病原体相互作用的未知机制,这对 B12 贫血人群具有重要意义。