Suppr超能文献

人工智能支持的胎儿超声心动图及其质量评估。

AI supported fetal echocardiography with quality assessment.

机构信息

Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, Dept. 4071, 2100, Copenhagen, Denmark.

出版信息

Sci Rep. 2024 Mar 9;14(1):5809. doi: 10.1038/s41598-024-56476-6.

Abstract

This study aimed to develop a deep learning model to assess the quality of fetal echocardiography and to perform prospective clinical validation. The model was trained on data from the 18-22-week anomaly scan conducted in seven hospitals from 2008 to 2018. Prospective validation involved 100 patients from two hospitals. A total of 5363 images from 2551 pregnancies were used for training and validation. The model's segmentation accuracy depended on image quality measured by a quality score (QS). It achieved an overall average accuracy of 0.91 (SD 0.09) across the test set, with images having above-average QS scoring 0.97 (SD 0.03). During prospective validation of 192 images, clinicians rated 44.8% (SD 9.8) of images as equal in quality, 18.69% (SD 5.7) favoring auto-captured images and 36.51% (SD 9.0) preferring manually captured ones. Images with above average QS showed better agreement on segmentations (p < 0.001) and QS (p < 0.001) with fetal medicine experts. Auto-capture saved additional planes beyond protocol requirements, resulting in more comprehensive echocardiographies. Low QS had adverse effect on both model performance and clinician's agreement with model feedback. The findings highlight the importance of developing and evaluating AI models based on 'noisy' real-life data rather than pursuing the highest accuracy possible with retrospective academic-grade data.

摘要

本研究旨在开发一种深度学习模型,以评估胎儿超声心动图的质量,并进行前瞻性临床验证。该模型基于 2008 年至 2018 年在七家医院进行的 18-22 周异常扫描数据进行训练。前瞻性验证涉及来自两家医院的 100 名患者。共有 2551 例妊娠的 5363 张图像用于训练和验证。模型的分割准确性取决于质量评分(QS)测量的图像质量。它在测试集中实现了 0.91(SD 0.09)的总体平均准确率,平均 QS 评分高于平均水平的图像准确率为 0.97(SD 0.03)。在对 192 张图像进行前瞻性验证期间,临床医生将 44.8%(SD 9.8)的图像评为质量相等,18.69%(SD 5.7)倾向于自动采集的图像,36.51%(SD 9.0)倾向于手动采集的图像。平均 QS 较高的图像在分割和 QS 上与胎儿医学专家的意见更一致(p<0.001)。自动采集超出协议要求的额外平面,从而获得更全面的超声心动图。低 QS 对模型性能和临床医生对模型反馈的一致性都有不利影响。研究结果强调了基于“嘈杂”的现实生活数据开发和评估人工智能模型的重要性,而不是追求使用回顾性学术级数据获得尽可能高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3d1/10925034/012737585ba3/41598_2024_56476_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验