Suppr超能文献

神经网络集成提供了专家级别的复杂先天性心脏病产前检测。

An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease.

机构信息

Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.

Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.

出版信息

Nat Med. 2021 May;27(5):882-891. doi: 10.1038/s41591-021-01342-5. Epub 2021 May 14.

Abstract

Congenital heart disease (CHD) is the most common birth defect. Fetal screening ultrasound provides five views of the heart that together can detect 90% of complex CHD, but in practice, sensitivity is as low as 30%. Here, using 107,823 images from 1,326 retrospective echocardiograms and screening ultrasounds from 18- to 24-week fetuses, we trained an ensemble of neural networks to identify recommended cardiac views and distinguish between normal hearts and complex CHD. We also used segmentation models to calculate standard fetal cardiothoracic measurements. In an internal test set of 4,108 fetal surveys (0.9% CHD, >4.4 million images), the model achieved an area under the curve (AUC) of 0.99, 95% sensitivity (95% confidence interval (CI), 84-99%), 96% specificity (95% CI, 95-97%) and 100% negative predictive value in distinguishing normal from abnormal hearts. Model sensitivity was comparable to that of clinicians and remained robust on outside-hospital and lower-quality images. The model's decisions were based on clinically relevant features. Cardiac measurements correlated with reported measures for normal and abnormal hearts. Applied to guideline-recommended imaging, ensemble learning models could significantly improve detection of fetal CHD, a critical and global diagnostic challenge.

摘要

先天性心脏病(CHD)是最常见的出生缺陷。胎儿筛查超声提供了心脏的五个视图,这些视图加起来可以检测到 90%的复杂 CHD,但实际上,灵敏度低至 30%。在这里,我们使用了 1326 例 18 至 24 周胎儿的回顾性超声心动图和筛查超声的 107823 张图像,训练了一个神经网络集合来识别推荐的心脏视图,并区分正常心脏和复杂 CHD。我们还使用分割模型来计算标准的胎儿心胸比测量值。在一个内部测试集的 4108 个胎儿调查中(0.9%的 CHD,超过 440 万张图像),该模型的曲线下面积(AUC)为 0.99,95%的灵敏度(95%置信区间(CI),84-99%),96%的特异性(95%CI,95-97%)和 100%的阴性预测值,可区分正常和异常心脏。模型的灵敏度与临床医生相当,并且在医院外和图像质量较低的情况下仍然稳健。该模型的决策是基于临床相关特征做出的。心脏测量值与正常和异常心脏的报告测量值相关。应用于指南推荐的成像,集合学习模型可以显著提高胎儿 CHD 的检测,这是一个关键且具有全球挑战性的诊断问题。

相似文献

引用本文的文献

1
Role of artificial intelligence in congenital heart disease.人工智能在先天性心脏病中的作用。
World J Clin Pediatr. 2025 Sep 9;14(3):105926. doi: 10.5409/wjcp.v14.i3.105926.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验