文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

胎儿超声图像分析的深度学习算法综述

A review on deep-learning algorithms for fetal ultrasound-image analysis.

作者信息

Fiorentino Maria Chiara, Villani Francesca Pia, Di Cosmo Mariachiara, Frontoni Emanuele, Moccia Sara

机构信息

Department of Information Engineering, Università Politecnica delle Marche, Italy.

Department of Humanities, Università degli Studi di Macerata, Italy.

出版信息

Med Image Anal. 2023 Jan;83:102629. doi: 10.1016/j.media.2022.102629. Epub 2022 Oct 14.


DOI:10.1016/j.media.2022.102629
PMID:36308861
Abstract

Deep-learning (DL) algorithms are becoming the standard for processing ultrasound (US) fetal images. A number of survey papers in the field is today available, but most of them are focusing on a broader area of medical-image analysis or not covering all fetal US DL applications. This paper surveys the most recent work in the field, with a total of 153 research papers published after 2017. Papers are analyzed and commented from both the methodology and the application perspective. We categorized the papers into (i) fetal standard-plane detection, (ii) anatomical structure analysis and (iii) biometry parameter estimation. For each category, main limitations and open issues are presented. Summary tables are included to facilitate the comparison among the different approaches. In addition, emerging applications are also outlined. Publicly-available datasets and performance metrics commonly used to assess algorithm performance are summarized, too. This paper ends with a critical summary of the current state of the art on DL algorithms for fetal US image analysis and a discussion on current challenges that have to be tackled by researchers working in the field to translate the research methodology into actual clinical practice.

摘要

深度学习(DL)算法正成为处理超声(US)胎儿图像的标准方法。目前该领域有许多综述论文,但其中大多数关注的是医学图像分析这一更广泛的领域,或者没有涵盖所有胎儿超声深度学习应用。本文综述了该领域的最新研究成果,共涉及2017年之后发表的153篇研究论文。从方法和应用两个角度对这些论文进行了分析和评论。我们将这些论文分为以下几类:(i)胎儿标准平面检测;(ii)解剖结构分析;(iii)生物测量参数估计。针对每一类,都介绍了主要局限性和未解决的问题。文中还包含汇总表,以方便不同方法之间的比较。此外,还概述了新兴应用。同时,总结了公开可用的数据集以及常用于评估算法性能的指标。本文最后对胎儿超声图像分析深度学习算法的当前技术水平进行了批判性总结,并讨论了该领域研究人员为将研究方法转化为实际临床实践而必须应对的当前挑战。

相似文献

[1]
A review on deep-learning algorithms for fetal ultrasound-image analysis.

Med Image Anal. 2023-1

[2]
Anatomy-aided deep learning for medical image segmentation: a review.

Phys Med Biol. 2021-5-26

[3]
Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal.

Ultrasound Obstet Gynecol. 2020-10

[4]
Deep computational pathology in breast cancer.

Semin Cancer Biol. 2021-7

[5]
3D reconstruction from endoscopy images: A survey.

Comput Biol Med. 2024-6

[6]
Deep learning-based lung image registration: A review.

Comput Biol Med. 2023-10

[7]
Deep Learning CT Image Reconstruction in Clinical Practice.

Rofo. 2021-3

[8]
Breast cancer detection using deep learning: Datasets, methods, and challenges ahead.

Comput Biol Med. 2022-10

[9]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[10]
Survey and Performance Analysis of Deep Learning Based Object Detection in Challenging Environments.

Sensors (Basel). 2021-7-28

引用本文的文献

[1]
FetalMLOps: operationalizing machine learning models for standard fetal ultrasound plane classification.

Med Biol Eng Comput. 2025-9-8

[2]
[A multi-feature fusion-based model for fetal orientation classification from intrapartum ultrasound videos].

Nan Fang Yi Ke Da Xue Xue Bao. 2025-7-20

[3]
Placenta segmentation redefined: review of deep learning integration of magnetic resonance imaging and ultrasound imaging.

Vis Comput Ind Biomed Art. 2025-7-15

[4]
Intelligent quality assessment of ultrasound images for fetal nuchal translucency measurement during the first trimester of pregnancy based on deep learning models.

BMC Pregnancy Childbirth. 2025-7-10

[5]
Uncovering ethical biases in publicly available fetal ultrasound datasets.

NPJ Digit Med. 2025-6-13

[6]
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images.

Simpl Med Ultrasound (2024). 2025

[7]
Diagnostic performance of the ultrasound -based artificial intelligence diagnostic system in predicting cervical lymph node metastasis in patients with thyroid cancer: A systematic review and meta-analysis.

Sci Prog. 2025

[8]
Predicting abnormal fetal growth using deep learning.

NPJ Digit Med. 2025-5-29

[9]
Contrastive prototype federated learning against noisy labels in fetal standard plane detection.

Int J Comput Assist Radiol Surg. 2025-5-21

[10]
Effectiveness and clinical impact of using deep learning for first-trimester fetal ultrasound image quality auditing.

BMC Pregnancy Childbirth. 2025-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索