Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
Biomolecules. 2020 Dec 17;10(12):1691. doi: 10.3390/biom10121691.
The application of segmentation methods to medical imaging has the potential to create novel diagnostic support models. With respect to fetal ultrasound, the thoracic wall is a key structure on the assessment of the chest region for examiners to recognize the relative orientation and size of structures inside the thorax, which are critical components in neonatal prognosis. In this study, to improve the segmentation performance of the thoracic wall in fetal ultrasound videos, we proposed a novel model-agnostic method using deep learning techniques: the Multi-Frame + Cylinder method (MFCY). The Multi-frame method (MF) uses time-series information of ultrasound videos, and the Cylinder method (CY) utilizes the shape of the thoracic wall. To evaluate the achieved improvement, we performed segmentation using five-fold cross-validation on 538 ultrasound frames in the four-chamber view (4CV) of 256 normal cases using U-net and DeepLabv3+. MFCY increased the mean values of the intersection over union (IoU) of thoracic wall segmentation from 0.448 to 0.493 for U-net and from 0.417 to 0.470 for DeepLabv3+. These results demonstrated that MFCY improved the segmentation performance of the thoracic wall in fetal ultrasound videos without altering the network structure. MFCY is expected to facilitate the development of diagnostic support models in fetal ultrasound by providing further accurate segmentation of the thoracic wall.
分割方法在医学成像中的应用具有创建新的诊断支持模型的潜力。在胎儿超声中,胸壁是评估胸部区域的关键结构,检查者可以通过它识别胸腔内结构的相对方位和大小,这些是新生儿预后的关键组成部分。在这项研究中,为了提高胎儿超声视频中胸壁的分割性能,我们提出了一种使用深度学习技术的新型无模型方法:多帧+圆柱方法(MFCY)。多帧方法(MF)利用超声视频的时间序列信息,圆柱方法(CY)利用胸壁的形状。为了评估所取得的改进,我们使用 U-net 和 DeepLabv3+ 在 256 个正常病例的四腔心视图(4CV)中对 538 个超声帧进行了五重交叉验证分割。MFCY 将 U-net 的胸壁分割的交并比(IoU)均值从 0.448 提高到 0.493,将 DeepLabv3+ 的 IoU 均值从 0.417 提高到 0.470。这些结果表明,MFCY 提高了胎儿超声视频中胸壁的分割性能,而不改变网络结构。MFCY 有望通过提供更准确的胸壁分割,为胎儿超声中的诊断支持模型的开发提供便利。