Butt Samia Rauf, Soulat Amna, Lal Priyanka Mohan, Fakhor Hajar, Patel Siddharth Kumar, Ali Mashal Binte, Arwani Suneel, Mohan Anmol, Majumder Koushik, Kumar Vikash, Tejwaney Usha, Kumar Sarwan
University College of Medicine and Dentistry, Lahore.
Ziauddin Medical University.
Ann Med Surg (Lond). 2024 Jan 17;86(3):1531-1539. doi: 10.1097/MS9.0000000000001733. eCollection 2024 Mar.
Endometrial cancer is one of the most prevalent tumours in females and holds an 83% survival rate within 5 years of diagnosis. Hypoestrogenism is a major risk factor for the development of endometrial carcinoma (EC) therefore two major types are derived, type 1 being oestrogen-dependent and type 2 being oestrogen independent. Surgery, chemotherapeutic drugs, and radiation therapy are only a few of the treatment options for EC. Treatment of gynaecologic malignancies greatly depends on diagnosis or prognostic prediction. Diagnostic imaging data and clinical course prediction are the two core pillars of artificial intelligence (AI) applications. One of the most popular imaging techniques for spotting preoperative endometrial cancer is MRI, although this technique can only produce qualitative data. When used to classify patients, AI improves the effectiveness of visual feature extraction. In general, AI has the potential to enhance the precision and effectiveness of endometrial cancer diagnosis and therapy. This review aims to highlight the current status of applications of AI in endometrial cancer and provide a comprehensive understanding of how recent advancements in AI have assisted clinicians in making better diagnosis and improving prognosis of endometrial cancer. Still, additional study is required to comprehend its strengths and limits fully.
子宫内膜癌是女性中最常见的肿瘤之一,诊断后5年内的生存率为83%。低雌激素血症是子宫内膜癌(EC)发生的主要危险因素,因此可分为两种主要类型,1型为雌激素依赖型,2型为雌激素非依赖型。手术、化疗药物和放射治疗只是EC的几种治疗选择。妇科恶性肿瘤的治疗很大程度上取决于诊断或预后预测。诊断成像数据和临床病程预测是人工智能(AI)应用的两大核心支柱。用于术前发现子宫内膜癌的最常用成像技术之一是MRI,尽管该技术只能产生定性数据。当用于对患者进行分类时,AI可提高视觉特征提取的有效性。总体而言,AI有潜力提高子宫内膜癌诊断和治疗的准确性和有效性。本综述旨在突出AI在子宫内膜癌中的应用现状,并全面了解AI的最新进展如何帮助临床医生做出更好的诊断并改善子宫内膜癌的预后。不过,仍需要进一步研究以充分理解其优势和局限性。