Suppr超能文献

用于定量磁共振成像中参数估计的偏差减少神经网络。

Bias-Reduced Neural Networks for Parameter Estimation in Quantitative MRI.

作者信息

Mao Andrew, Flassbeck Sebastian, Assländer Jakob

机构信息

Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York.

Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York.

出版信息

ArXiv. 2024 Apr 10:arXiv:2312.11468v3.

Abstract

PURPOSE

To develop neural network (NN)-based quantitative MRI parameter estimators with minimal bias and a variance close to the Cramér-Rao bound.

THEORY AND METHODS

We generalize the mean squared error loss to control the bias and variance of the NN's estimates, which involves averaging over multiple noise realizations of the same measurements during training. Bias and variance properties of the resulting NNs are studied for two neuroimaging applications.

RESULTS

In simulations, the proposed strategy reduces the estimates' bias throughout parameter space and achieves a variance close to the Cramér-Rao bound. In vivo, we observe good concordance between parameter maps estimated with the proposed NNs and traditional estimators, such as non-linear least-squares fitting, while state-of-the-art NNs show larger deviations.

CONCLUSION

The proposed NNs have greatly reduced bias compared to those trained using the mean squared error and offer significantly improved computational efficiency over traditional estimators with comparable or better accuracy.

摘要

目的

开发基于神经网络(NN)的定量MRI参数估计器,使其偏差最小且方差接近克拉美罗界。

理论与方法

我们推广均方误差损失以控制神经网络估计的偏差和方差,这涉及在训练期间对相同测量的多个噪声实现进行平均。针对两种神经成像应用研究了所得神经网络的偏差和方差特性。

结果

在模拟中,所提出的策略在整个参数空间中降低了估计偏差,并实现了接近克拉美罗界的方差。在体内,我们观察到使用所提出的神经网络估计的参数图与传统估计器(如非线性最小二乘拟合)之间具有良好的一致性,而最先进的神经网络显示出较大偏差。

结论

与使用均方误差训练的神经网络相比,所提出的神经网络偏差大大降低,并且在具有可比或更好准确性的情况下,与传统估计器相比计算效率显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e077/11017894/987d896b436a/nihpp-2312.11468v3-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验