Mao Andrew, Flassbeck Sebastian, Assländer Jakob
Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York.
Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York.
ArXiv. 2024 Apr 10:arXiv:2312.11468v3.
To develop neural network (NN)-based quantitative MRI parameter estimators with minimal bias and a variance close to the Cramér-Rao bound.
We generalize the mean squared error loss to control the bias and variance of the NN's estimates, which involves averaging over multiple noise realizations of the same measurements during training. Bias and variance properties of the resulting NNs are studied for two neuroimaging applications.
In simulations, the proposed strategy reduces the estimates' bias throughout parameter space and achieves a variance close to the Cramér-Rao bound. In vivo, we observe good concordance between parameter maps estimated with the proposed NNs and traditional estimators, such as non-linear least-squares fitting, while state-of-the-art NNs show larger deviations.
The proposed NNs have greatly reduced bias compared to those trained using the mean squared error and offer significantly improved computational efficiency over traditional estimators with comparable or better accuracy.
开发基于神经网络(NN)的定量MRI参数估计器,使其偏差最小且方差接近克拉美罗界。
我们推广均方误差损失以控制神经网络估计的偏差和方差,这涉及在训练期间对相同测量的多个噪声实现进行平均。针对两种神经成像应用研究了所得神经网络的偏差和方差特性。
在模拟中,所提出的策略在整个参数空间中降低了估计偏差,并实现了接近克拉美罗界的方差。在体内,我们观察到使用所提出的神经网络估计的参数图与传统估计器(如非线性最小二乘拟合)之间具有良好的一致性,而最先进的神经网络显示出较大偏差。
与使用均方误差训练的神经网络相比,所提出的神经网络偏差大大降低,并且在具有可比或更好准确性的情况下,与传统估计器相比计算效率显著提高。