Suppr超能文献

抗生素耐药性的演变影响大肠杆菌和表皮葡萄球菌的最佳温度和生长速率。

Evolution of antibiotic resistance impacts optimal temperature and growth rate in Escherichia coli and Staphylococcus epidermidis.

机构信息

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, USA.

Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA.

出版信息

J Appl Microbiol. 2022 Oct;133(4):2655-2667. doi: 10.1111/jam.15736. Epub 2022 Sep 7.

Abstract

AIMS

Bacterial response to temperature changes can influence their pathogenicity to plants and humans. Changes in temperature can affect cellular and physiological responses in bacteria that can in turn affect the evolution and prevalence of antibiotic-resistance genes. Yet, how antibiotic-resistance genes influence microbial temperature response is poorly understood.

METHODS AND RESULTS

We examined growth rates and physiological responses to temperature in two species-E. coli and Staph. epidermidis-after evolved resistance to 13 antibiotics. We found that evolved resistance results in species-, strain- and antibiotic-specific shifts in optimal temperature. When E. coli evolves resistance to nucleic acid and cell wall inhibitors, their optimal growth temperature decreases, and when Staph. epidermidis and E. coli evolve resistance to protein synthesis and their optimal temperature increases. Intriguingly, when Staph. epidermidis evolves resistance to Teicoplanin, fitness also increases in drug-free environments, independent of temperature response.

CONCLUSION

Our results highlight how the complexity of antibiotic resistance is amplified when considering physiological responses to temperature.

SIGNIFICANCE

Bacteria continuously respond to changing temperatures-whether through increased body temperature during fever, climate change or other factors. It is crucial to understand the interactions between antibiotic resistance and temperature.

摘要

目的

细菌对温度变化的反应会影响其对植物和人类的致病性。温度变化会影响细菌的细胞和生理反应,进而影响抗生素耐药基因的进化和流行。然而,抗生素耐药基因如何影响微生物对温度的反应还知之甚少。

方法和结果

我们研究了两种细菌——大肠杆菌和表皮葡萄球菌——在对 13 种抗生素产生耐药性后的生长速度和对温度的生理反应。我们发现,进化后的耐药性导致最佳温度在物种、菌株和抗生素特异性上发生变化。当大肠杆菌对核酸和细胞壁抑制剂产生耐药性时,其最佳生长温度下降,而表皮葡萄球菌和大肠杆菌对蛋白质合成产生耐药性时,其最佳温度上升。有趣的是,当表皮葡萄球菌对替考拉宁产生耐药性时,无论温度反应如何,在无药物环境中,其适应性也会增加。

结论

我们的研究结果强调了在考虑对温度的生理反应时,抗生素耐药性的复杂性会如何被放大。

意义

细菌不断对温度变化做出反应——无论是在发烧时体温升高、气候变化还是其他因素。了解抗生素耐药性和温度之间的相互作用至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验