Jin Dong-Min, Morton James T, Bonneau Richard
Center for Genomics and Systems Biology, New York University, New York, NY, USA.
Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA.
bioRxiv. 2024 Feb 29:2024.02.27.582333. doi: 10.1101/2024.02.27.582333.
Microbiome studies have revealed gut microbiota's potential impact on complex diseases. However, many studies often focus on one disease per cohort. We developed a meta-analysis workflow for gut microbiome profiles and analyzed shotgun metagenomic data covering 11 diseases. Using interpretable machine learning and differential abundance analysis, our findings reinforce the generalization of binary classifiers for Crohn's disease (CD) and colorectal cancer (CRC) to hold-out cohorts and highlight the key microbes driving these classifications. We identified high microbial similarity in disease pairs like CD vs ulcerative colitis (UC), CD vs CRC, Parkinson's disease vs type 2 diabetes (T2D), and schizophrenia vs T2D. We also found strong inverse correlations in Alzheimer's disease vs CD and UC. These findings detected by our pipeline provide valuable insights into these diseases.
微生物组研究揭示了肠道微生物群对复杂疾病的潜在影响。然而,许多研究往往每个队列只关注一种疾病。我们开发了一种针对肠道微生物组谱的荟萃分析工作流程,并分析了涵盖11种疾病的鸟枪法宏基因组数据。通过可解释的机器学习和差异丰度分析,我们的研究结果强化了克罗恩病(CD)和结直肠癌(CRC)二元分类器在验证队列中的通用性,并突出了驱动这些分类的关键微生物。我们在CD与溃疡性结肠炎(UC)、CD与CRC、帕金森病与2型糖尿病(T2D)以及精神分裂症与T2D等疾病对中发现了高度的微生物相似性。我们还在阿尔茨海默病与CD和UC之间发现了强烈的负相关。我们的流程所检测到的这些发现为这些疾病提供了有价值的见解。