Center for Genomics and Systems Biology, New York University, New York, New York, USA.
Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA.
mSystems. 2024 Aug 20;9(8):e0029524. doi: 10.1128/msystems.00295-24. Epub 2024 Jul 30.
Microbiome studies have revealed gut microbiota's potential impact on complex diseases. However, many studies often focus on one disease per cohort. We developed a meta-analysis workflow for gut microbiome profiles and analyzed shotgun metagenomic data covering 11 diseases. Using interpretable machine learning and differential abundance analysis, our findings reinforce the generalization of binary classifiers for Crohn's disease (CD) and colorectal cancer (CRC) to hold-out cohorts and highlight the key microbes driving these classifications. We identified high microbial similarity in disease pairs like CD vs ulcerative colitis (UC), CD vs CRC, Parkinson's disease vs type 2 diabetes (T2D), and schizophrenia vs T2D. We also found strong inverse correlations in Alzheimer's disease vs CD and UC. These findings, detected by our pipeline, provide valuable insights into these diseases.
Assessing disease similarity is an essential initial step preceding a disease-based approach for drug repositioning. Our study provides a modest first step in underscoring the potential of integrating microbiome insights into the disease similarity assessment. Recent microbiome research has predominantly focused on analyzing individual diseases to understand their unique characteristics, which by design excludes comorbidities in individuals. We analyzed shotgun metagenomic data from existing studies and identified previously unknown similarities between diseases. Our research represents a pioneering effort that utilizes both interpretable machine learning and differential abundance analysis to assess microbial similarity between diseases.
微生物组研究揭示了肠道微生物群对复杂疾病的潜在影响。然而,许多研究通常侧重于每个队列中的一种疾病。我们开发了一种用于肠道微生物组谱的荟萃分析工作流程,并分析了涵盖 11 种疾病的鸟枪法宏基因组数据。使用可解释的机器学习和差异丰度分析,我们的研究结果加强了用于克罗恩病(CD)和结直肠癌(CRC)的二进制分类器的泛化能力,使其能够适用于独立队列,并突出了驱动这些分类的关键微生物。我们确定了疾病对(如 CD 与溃疡性结肠炎(UC)、CD 与 CRC、帕金森病与 2 型糖尿病(T2D)、精神分裂症与 T2D)之间的高微生物相似性。我们还发现阿尔茨海默病与 CD 和 UC 之间存在强烈的负相关。我们的方法检测到的这些发现为这些疾病提供了有价值的见解。
评估疾病相似性是药物重定位基于疾病方法之前的一个重要初始步骤。我们的研究为将微生物组见解纳入疾病相似性评估提供了一个适度的初步步骤。最近的微生物组研究主要集中在分析单个疾病以了解其独特特征,这在设计上排除了个体的共病。我们分析了来自现有研究的鸟枪法宏基因组数据,并确定了疾病之间以前未知的相似性。我们的研究代表了一种开创性的努力,它利用可解释的机器学习和差异丰度分析来评估疾病之间的微生物相似性。