Suppr超能文献

提高甲状腺结节恶性预测能力:TI-RADS 4 类病变的多模态超声影像组学方法

Enhancing malignancy prediction in thyroid nodules: A multimodal ultrasound radiomics approach in TI-RADS category 4 lesions.

机构信息

Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.

Department of Ultrasound Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.

出版信息

J Clin Ultrasound. 2024 Jun;52(5):511-521. doi: 10.1002/jcu.23662. Epub 2024 Mar 11.

Abstract

PURPOSE

To explore the diagnostic value of intralesional and perilesional radiomics based on multimodal ultrasound (US) images in predicting the malignant ACR TIRADS 4 thyroid nodules (TNs).

METHODS

A total of 297 cases of TNs in patients who underwent preoperative thyroid grayscale US and shear wave elastography (STE) were enrolled (training cohort: n = 150, internal validation cohort: n = 77, external validation cohort: n = 70). Regions of interests (ROIs) were delineated on grayscale US images and STE images, and then an isotropic expansion of 1.0, 1.5, 2.0, 2.5, and 3.0 mm was applied. Predictive models were established using recursive feature elimination-support vector machines (RFE-SVM) based on radiomics features calculated by random forest.

RESULTS

The perilesional ROI expansion achieved the highest area under curve (AUC) (AUC: 0.753 for grayscale US, 0.728 for STE; 95% confidence interval (CI): 0.664-0.743, 0.684-0.739, respectively). The joint model had the highest AUC values of 0.936 in the training dataset, 0.926 in internal dataset, and 0.893 in external dataset. The calibration curve showed good consistency and the decision curve indicated a greater clinical net benefit of the joint model.

CONCLUSION

Joint model containing perilesional radiomics (1.5 mm) had significant value in predicting the malignant ACR TIRADS 4 TNs.

摘要

目的

探讨基于多模态超声(US)图像的瘤内和瘤周放射组学在预测恶性 ACR TIRADS 4 甲状腺结节(TN)中的诊断价值。

方法

共纳入 297 例术前甲状腺灰阶 US 和剪切波弹性成像(STE)检查的 TN 患者(训练队列:n=150,内部验证队列:n=77,外部验证队列:n=70)。在灰阶 US 图像和 STE 图像上勾画出感兴趣区(ROI),然后进行各向同性的 1.0、1.5、2.0、2.5 和 3.0mm 扩张。使用随机森林计算的放射组学特征,基于递归特征消除-支持向量机(RFE-SVM)建立预测模型。

结果

瘤周 ROI 扩张的曲线下面积(AUC)最高(灰阶 US 的 AUC:0.753,STE 的 AUC:0.728;95%置信区间(CI):0.664-0.743,0.684-0.739)。联合模型在训练数据集、内部数据集和外部数据集中的 AUC 值最高,分别为 0.936、0.926 和 0.893。校准曲线显示出良好的一致性,决策曲线表明联合模型具有更大的临床净获益。

结论

包含瘤周放射组学(1.5mm)的联合模型在预测恶性 ACR TIRADS 4 TN 方面具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验