Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea.
Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Mar 20;16(11):13622-13639. doi: 10.1021/acsami.4c02119. Epub 2024 Mar 11.
The design of implantable biomaterials involves precise tuning of surface features because the early cellular fate on such engineered surfaces is highly influenced by many physicochemical factors [roughness, hydrophilicity, reactive oxygen species (ROS) responsiveness, etc.]. Herein, to enhance soft tissue integration for successful implantation, Ti substrates decorated with uniform layers of nanoceria (Ce), called Ti@Ce, were optimally developed by a simple and cost-effective in situ immersion coating technique. The characterization of Ti@Ce shows a uniform Ce distribution with enhanced roughness (∼3-fold increase) and hydrophilicity (∼4-fold increase) and adopted ROS-scavenging capacity by nanoceria coating. When human gingival fibroblasts were seeded on Ti@Ce under oxidative stress conditions, Ti@Ce supported cellular adhesion, spreading, and survivability by its cellular ROS-scavenging capacity. Mechanistically, the unique nanocoating resulted in higher expression of amphiphysin (a nanotopology sensor), paxillin (a focal adhesion protein), and cell adhesive proteins (collagen-1 and fibronectin). Ti@Ce also led to global chromatin condensation by decreasing histone 3 acetylation as an early differentiation feature. Transcriptome analysis by RNA sequencing confirmed the chromatin remodeling, antiapoptosis, antioxidant, cell adhesion, and TGF-β signaling-related gene signatures in Ti@Ce. As key fibroblast transcription (co)factors, Ti@Ce promotes serum response factor and MRTF-α nucleus localization. Considering all of this, it is proposed that the surface engineering approach using Ce could improve the biological properties of Ti implants, supporting their functioning at soft tissue interfaces and utilization as a bioactive implant for clinical conditions such as peri-implantitis.
植入生物材料的设计涉及到对表面特性的精确调整,因为在这些工程表面上早期的细胞命运受到许多物理化学因素的强烈影响[粗糙度、亲水性、活性氧(ROS)响应性等]。在此,为了增强软组织的整合以实现成功植入,通过一种简单且具有成本效益的原位浸渍涂层技术,优化了具有均匀纳米氧化铈(Ce)层的 Ti 基底(Ti@Ce)的设计。Ti@Ce 的特性表明,Ce 的分布均匀,粗糙度提高了(增加了约 3 倍),亲水性提高了(增加了约 4 倍),并且通过纳米氧化铈涂层具有 ROS 清除能力。当人牙龈成纤维细胞在氧化应激条件下接种在 Ti@Ce 上时,Ti@Ce 通过其细胞 ROS 清除能力支持细胞的黏附、扩展和存活。从机制上讲,独特的纳米涂层导致更高的 amphiphysin(纳米拓扑传感器)、paxillin(黏附斑蛋白)和细胞黏附蛋白(胶原蛋白-1 和纤连蛋白)的表达。Ti@Ce 通过降低组蛋白 3 乙酰化作为早期分化特征,导致全局染色质凝聚。通过 RNA 测序进行的转录组分析证实了 Ti@Ce 中的染色质重塑、抗凋亡、抗氧化、细胞黏附和 TGF-β 信号相关基因特征。作为关键的成纤维细胞转录(共)因子,Ti@Ce 促进血清反应因子和 MRTF-α 核定位。考虑到这一切,据推测,使用 Ce 的表面工程方法可以提高 Ti 植入物的生物学特性,支持它们在软组织界面的功能,并将其用作生物活性植入物,用于牙周炎等临床情况。