Seeuws Nick, De Vos Maarten, Bertrand Alexander
IEEE Trans Biomed Eng. 2024 Aug;71(8):2442-2453. doi: 10.1109/TBME.2024.3375759. Epub 2024 Jul 18.
Finding events of interest is a common task in biomedical signal processing. The detection of epileptic seizures and signal artefacts are two key examples. Epoch-based classification is the typical machine learning framework to detect such signal events because of the straightforward application of classical machine learning techniques. Usually, post-processing is required to achieve good performance and enforce temporal dependencies. Designing the right post-processing scheme to convert these classification outputs into events is a tedious, and labor-intensive element of this framework.
We propose an event-based modeling framework that directly works with events as learning targets, stepping away from ad-hoc post-processing schemes to turn model outputs into events. We illustrate the practical power of this framework on simulated data and real-world data, comparing it to epoch-based modeling approaches.
We show that event-based modeling (without tailored post-processing) performs on par with or better than epoch-based modeling with extensive post-processing.
These results show the power of treating events as direct learning targets, instead of using ad-hoc post-processing to obtain them, severely reducing design effort. Significance The event-based modeling framework can easily be applied to other event detection problems in signal processing, removing the need for intensive task-specific post-processing.
在生物医学信号处理中,寻找感兴趣的事件是一项常见任务。癫痫发作检测和信号伪迹检测就是两个关键例子。基于时段的分类是检测此类信号事件的典型机器学习框架,因为经典机器学习技术的应用很直接。通常,需要进行后处理以实现良好性能并强化时间依赖性。设计合适的后处理方案将这些分类输出转换为事件是该框架中一项繁琐且耗费人力的工作。
我们提出一种基于事件的建模框架,该框架直接以事件作为学习目标,摒弃了将模型输出转换为事件的临时后处理方案。我们在模拟数据和真实数据上展示了该框架的实际效能,并将其与基于时段的建模方法进行比较。
我们表明,基于事件的建模(无需定制后处理)与经过大量后处理的基于时段的建模表现相当或更优。
这些结果表明将事件作为直接学习目标的效能,而非使用临时后处理来获取它们,从而大幅减少了设计工作量。意义:基于事件的建模框架可轻松应用于信号处理中的其他事件检测问题,无需进行密集的特定任务后处理。