Zhang Tianning, Yan Qizhi, Yang Xiaosheng, Ma Weiliang, Chen Runkun, Zhang Xin, Janzen Eli, Edgar James H, Qiu Cheng-Wei, Zhang Xinliang, Li Peining
Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
Optics Valley Laboratory, Wuhan 430074, China.
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2319465121. doi: 10.1073/pnas.2319465121. Epub 2024 Mar 11.
In conventional thin materials, the diffraction limit of light constrains the number of waveguide modes that can exist at a given frequency. However, layered van der Waals (vdW) materials, such as hexagonal boron nitride (hBN), can surpass this limitation due to their dielectric anisotropy, exhibiting positive permittivity along one optic axis and negativity along the other. This enables the propagation of hyperbolic rays within the material bulk and an unlimited number of subdiffractional modes characterized by hyperbolic dispersion. By employing time-domain near-field interferometry to analyze ultrafast hyperbolic ray pulses in thin hBN, we showed that their zigzag reflection trajectories bound within the hBN layer create an illusion of backward-moving and leaping behavior of pulse fringes. These rays result from the coherent beating of hyperbolic waveguide modes but could be mistakenly interpreted as negative group velocities and backward energy flow. Moreover, the zigzag reflections produce nanoscale (60 nm) and ultrafast (40 fs) spatiotemporal optical vortices along the trajectory, presenting opportunities to chiral spatiotemporal control of light-matter interactions. Supported by experimental evidence, our simulations highlight the potential of hyperbolic ray reflections for molecular vibrational absorption nanospectroscopy. The results pave the way for miniaturized, on-chip optical spectrometers, and ultrafast optical manipulation.
在传统的薄材料中,光的衍射极限限制了在给定频率下能够存在的波导模式数量。然而,诸如六方氮化硼(hBN)之类的层状范德华(vdW)材料,由于其介电各向异性,能够超越这一限制,在一个光轴方向上表现出正电容率,而在另一个光轴方向上表现出负电容率。这使得双曲线光线能够在材料体内传播,并产生无数具有双曲线色散特征的亚衍射模式。通过采用时域近场干涉测量法来分析薄hBN中的超快双曲线光线脉冲,我们发现,它们在hBN层内的锯齿形反射轨迹造成了脉冲条纹向后移动和跳跃行为的假象。这些光线源于双曲线波导模式的相干拍频,但可能会被错误地解释为负群速度和反向能量流。此外,锯齿形反射沿轨迹产生纳米级(60纳米)和超快(40飞秒)的时空光学涡旋,为光与物质相互作用的手性时空控制提供了机会。在实验证据的支持下,我们的模拟突出了双曲线光线反射在分子振动吸收纳米光谱学中的潜力。这些结果为小型化的片上光学光谱仪和超快光学操纵铺平了道路。