Suppr超能文献

使用深度神经网络检测肺部超声图像中的新冠病毒特征。

Detection of COVID-19 features in lung ultrasound images using deep neural networks.

作者信息

Zhao Lingyi, Fong Tiffany Clair, Bell Muyinatu A Lediju

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

Department of Emergency Medicine, Johns Hopkins Medicine, Baltimore, MD, USA.

出版信息

Commun Med (Lond). 2024 Mar 11;4(1):41. doi: 10.1038/s43856-024-00463-5.

Abstract

BACKGROUND

Deep neural networks (DNNs) to detect COVID-19 features in lung ultrasound B-mode images have primarily relied on either in vivo or simulated images as training data. However, in vivo images suffer from limited access to required manual labeling of thousands of training image examples, and simulated images can suffer from poor generalizability to in vivo images due to domain differences. We address these limitations and identify the best training strategy.

METHODS

We investigated in vivo COVID-19 feature detection with DNNs trained on our carefully simulated datasets (40,000 images), publicly available in vivo datasets (174 images), in vivo datasets curated by our team (958 images), and a combination of simulated and internal or external in vivo datasets. Seven DNN training strategies were tested on in vivo B-mode images from COVID-19 patients.

RESULTS

Here, we show that Dice similarity coefficients (DSCs) between ground truth and DNN predictions are maximized when simulated data are mixed with external in vivo data and tested on internal in vivo data (i.e., 0.482 ± 0.211), compared with using only simulated B-mode image training data (i.e., 0.464 ± 0.230) or only external in vivo B-mode training data (i.e., 0.407 ± 0.177). Additional maximization is achieved when a separate subset of the internal in vivo B-mode images are included in the training dataset, with the greatest maximization of DSC (and minimization of required training time, or epochs) obtained after mixing simulated data with internal and external in vivo data during training, then testing on the held-out subset of the internal in vivo dataset (i.e., 0.735 ± 0.187).

CONCLUSIONS

DNNs trained with simulated and in vivo data are promising alternatives to training with only real or only simulated data when segmenting in vivo COVID-19 lung ultrasound features.

摘要

背景

用于在肺部超声B模式图像中检测新冠肺炎特征的深度神经网络(DNN)主要依赖于体内或模拟图像作为训练数据。然而,体内图像难以获得数千个训练图像示例所需的手动标注,而模拟图像由于领域差异,对体内图像的泛化能力可能较差。我们解决了这些局限性,并确定了最佳训练策略。

方法

我们研究了使用在精心模拟的数据集(40000张图像)、公开可用的体内数据集(174张图像)、我们团队整理的体内数据集(958张图像)以及模拟与内部或外部体内数据集组合上训练的DNN进行体内新冠肺炎特征检测。对来自新冠肺炎患者的体内B模式图像测试了七种DNN训练策略。

结果

在此,我们表明,当模拟数据与外部体内数据混合并在内部体内数据上进行测试时,真实情况与DNN预测之间的骰子相似系数(DSC)最大化(即0.482±0.211),相比之下,仅使用模拟B模式图像训练数据(即0.464±0.230)或仅使用外部体内B模式训练数据(即0.407±0.177)。当训练数据集中包含内部体内B模式图像的单独子集时,可实现进一步的最大化,在训练期间将模拟数据与内部和外部体内数据混合,然后在内部体内数据集的保留子集上进行测试时,可获得最大的DSC最大化(以及所需训练时间或轮次的最小化)(即0.735±0.187)。

结论

在分割体内新冠肺炎肺部超声特征时,使用模拟数据和体内数据训练的DNN是仅使用真实数据或仅使用模拟数据训练的有前途的替代方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验