Division of Critical Care Medicine, Western University, London, Ontario, Canada
Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
BMJ Open. 2021 Mar 5;11(3):e045120. doi: 10.1136/bmjopen-2020-045120.
Lung ultrasound (LUS) is a portable, low-cost respiratory imaging tool but is challenged by user dependence and lack of diagnostic specificity. It is unknown whether the advantages of LUS implementation could be paired with deep learning (DL) techniques to match or exceed human-level, diagnostic specificity among similar appearing, pathological LUS images.
A convolutional neural network (CNN) was trained on LUS images with B lines of different aetiologies. CNN diagnostic performance, as validated using a 10% data holdback set, was compared with surveyed LUS-competent physicians.
Two tertiary Canadian hospitals.
612 LUS videos (121 381 frames) of B lines from 243 distinct patients with either (1) COVID-19 (COVID), non-COVID acute respiratory distress syndrome (NCOVID) or (3) hydrostatic pulmonary edema (HPE).
The trained CNN performance on the independent dataset showed an ability to discriminate between COVID (area under the receiver operating characteristic curve (AUC) 1.0), NCOVID (AUC 0.934) and HPE (AUC 1.0) pathologies. This was significantly better than physician ability (AUCs of 0.697, 0.704, 0.967 for the COVID, NCOVID and HPE classes, respectively), p<0.01.
A DL model can distinguish similar appearing LUS pathology, including COVID-19, that cannot be distinguished by humans. The performance gap between humans and the model suggests that subvisible biomarkers within ultrasound images could exist and multicentre research is merited.
肺部超声(LUS)是一种便携式、低成本的呼吸成像工具,但受到用户依赖性和诊断特异性缺乏的限制。目前尚不清楚 LUS 的实施优势是否可以与深度学习(DL)技术相结合,以匹配或超过具有相似表现的病理性 LUS 图像的人类水平、诊断特异性。
在具有不同病因的 B 线的 LUS 图像上训练卷积神经网络(CNN)。使用 10%的数据保留集验证 CNN 的诊断性能,并与接受过 LUS 培训的医生进行比较。
加拿大的两家三级医院。
612 个 LUS 视频(121 381 帧)来自 243 名具有 COVID-19(COVID)、非 COVID 急性呼吸窘迫综合征(NCOVID)或(3)静水压力性肺水肿(HPE)的不同患者的 B 线。
独立数据集上训练的 CNN 性能能够区分 COVID(接受者操作特征曲线下面积(AUC)为 1.0)、NCOVID(AUC 0.934)和 HPE(AUC 1.0)病理学。这明显优于医生的能力(COVID、NCOVID 和 HPE 类别的 AUC 分别为 0.697、0.704 和 0.967),p<0.01。
DL 模型可以区分具有相似表现的 LUS 病理学,包括 COVID-19,而人类无法区分。人类和模型之间的性能差距表明,超声图像中可能存在亚可见生物标志物,值得进行多中心研究。