Suppr超能文献

一种基于SegFormer的用于牙周骨丧失影像学测量的级联学习方法。

A cascading learning method with SegFormer for radiographic measurement of periodontal bone loss.

作者信息

Yu Hanwen, Ye Xin, Hong Wanjing, Shi Rui, Ding Yi, Liu Chengcheng

机构信息

School of Resources and Environment, University of Electronic Science and Technology, Chengdu, Sichuan, 610097, China.

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.

出版信息

BMC Oral Health. 2024 Mar 11;24(1):325. doi: 10.1186/s12903-024-04079-y.

Abstract

OBJECTIVE

Marginal alveolar bone loss is one of the key features of periodontitis and can be observed via panoramic radiographs. This study aimed to establish a cascading learning method with deep learning (DL) for precise radiographic bone loss (RBL) measurements at specific tooth positions.

MATERIALS AND METHODS

Through the design of two tasks for tooth position recognition and tooth semantic segmentation using the SegFormer model, specific tooth's crown, intrabony portion, and suprabony portion of the roots were obtained. The RBL was subsequently measured by length through these three areas using the principal component analysis (PCA) principal axis.

RESULTS

The average intersection over union (IoU) for the tooth position recognition task was 0.8906, with an F1-score of 0.9338. The average IoU for the tooth semantic segmentation task was 0.8465, with an F1-score of 0.9138. When the two tasks were combined, the average IoU was 0.7889, with an F1-score of 0.8674. The correlation coefficient between the RBL prediction results based on the PCA principal axis and the clinicians' measurements exceeded 0.85. Compared to those of the other two methods, the average precision of the predicted RBL was 0.7722, the average sensitivity was 0.7416, and the average F1-score was 0.7444.

CONCLUSIONS

The method for predicting RBL using DL and PCA produced promising results, offering rapid and reliable auxiliary information for future periodontal disease diagnosis.

CLINICAL RELEVANCE

Precise RBL measurements are important for periodontal diagnosis. The proposed RBL-SF can measure RBL at specific tooth positions and assign the bone loss stage. The ability of the RBL-SF to measure RBL at specific tooth positions can guide clinicians to a certain extent in the accurate diagnosis of periodontitis.

摘要

目的

边缘性牙槽骨吸收是牙周炎的关键特征之一,可通过全景X线片观察到。本研究旨在建立一种基于深度学习(DL)的级联学习方法,用于在特定牙齿位置精确测量放射学骨吸收(RBL)。

材料与方法

通过使用SegFormer模型设计两个任务,即牙齿位置识别和牙齿语义分割,获取特定牙齿的牙冠、骨内部分和牙根的骨上部分。随后,使用主成分分析(PCA)主轴通过这三个区域测量RBL的长度。

结果

牙齿位置识别任务的平均交并比(IoU)为0.8906,F1分数为0.9338。牙齿语义分割任务的平均IoU为0.8465,F1分数为0.9138。当两个任务结合时,平均IoU为0.7889,F1分数为0.8674。基于PCA主轴的RBL预测结果与临床医生测量结果之间的相关系数超过0.85。与其他两种方法相比,预测RBL的平均精度为0.7722,平均灵敏度为0.7416,平均F1分数为0.7444。

结论

使用DL和PCA预测RBL的方法取得了有前景的结果,为未来牙周疾病诊断提供了快速可靠的辅助信息。

临床意义

精确测量RBL对牙周诊断很重要。所提出的RBL-SF可以在特定牙齿位置测量RBL并确定骨吸收阶段。RBL-SF在特定牙齿位置测量RBL 的能力可以在一定程度上指导临床医生准确诊断牙周炎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867a/10929133/154aa63cb37e/12903_2024_4079_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验