Geng Hairui, Tang Jie, Wu Yanwei, Yu Yuanqin, Guest Jeffrey R, Zhang Rui
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei Anhui 230601, China.
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States.
ACS Nano. 2024 Mar 26;18(12):8961-8970. doi: 10.1021/acsnano.3c12555. Epub 2024 Mar 12.
Valley excitons dominate the optoelectronic response of transition-metal dichalcogenides and are drastically affected by structural and environmental inhomogeneities localized in these materials. Critical to understanding and controlling these nanoscale excitonic changes is the ability to correlate the imaging of excitonic states with crystalline structures on the atomic scale. Here, we apply scanning tunneling microscope-induced luminescence microscopy to image valley excitons in a semiconducting transition-metal dichalcogenide monolayer decoupled by a 10 nanometer-thick hexagonal-boron-nitride flake incorporated in a lateral homojunction on an Au electrode surface. This design enables the observation of chiral excitonic emission arising from neutral and charged valley excitons of the monolayer semiconductor at ambipolar voltages with a quantum efficiency up to ∼10 photon/electron. The measured light helicity demonstrates considerable circular polarization dependent on the sample voltage, reaching as much as 40%. The real-space luminescence imaging maps─at subnanometer resolution─of the valley excitons reveal striking spatial variations associated with localized inhomogeneities, including surface impurities and possibly nanoscale dielectric and/or potential disorders in the monolayer. Our study introduces a promising format for 2D materials to explore and tailor their optoelectronic processes at the atomic scale.
谷激子主导着过渡金属二硫族化合物的光电响应,并受到这些材料中局部存在的结构和环境不均匀性的显著影响。对于理解和控制这些纳米级激子变化而言,关键在于能够在原子尺度上把激子态成像与晶体结构关联起来。在此,我们应用扫描隧道显微镜诱导发光显微镜,对通过一个10纳米厚的六方氮化硼薄片与金电极表面上的横向同质结分离的半导体过渡金属二硫族化合物单层中的谷激子进行成像。这种设计能够在双极性电压下观察到单层半导体的中性和带电谷激子产生的手性激子发射,量子效率高达约10光子/电子。所测量的光螺旋度表明,圆偏振相当程度上取决于样品电压,高达40%。谷激子的亚纳米分辨率实空间发光成像图揭示了与局部不均匀性相关的显著空间变化,包括表面杂质以及单层中可能存在的纳米级介电和/或电势紊乱。我们的研究为二维材料在原子尺度上探索和定制其光电过程引入了一种很有前景的形式。