Suppr超能文献

使用带有毛细管电极的大气压等离子体反应器提高原位碘掺杂聚吡咯薄膜的电导率

Improvement of Electrical Conductivity of In Situ Iodine-Doped Polypyrrole Film Using Atmospheric Pressure Plasma Reactor with Capillary Electrodes.

作者信息

Jung Eun Young, Khalil Salman, Jang Hyojun, Suleiman Habeeb Olaitan, Kim Jae Young, Shin Bhum Jae, Tae Heung-Sik, Park Choon-Sang

机构信息

The Institute of Electronic Technology, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.

School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.

出版信息

Nanomaterials (Basel). 2024 Mar 4;14(5):468. doi: 10.3390/nano14050468.

Abstract

To improve the electrical conductivity of polypyrrole (PPy) nanostructure film through in situ iodine (I) doping, this study proposes an atmospheric pressure plasma reactor (APPR) where heated I dopant vapor is fed through capillary electrodes that serve as electrodes for discharge ignition. A large amount of the heated I vapor introduced into the reactor separately from a monomer gas can be effectively activated by an intense plasma via capillary electrodes. In particular, intensive plasma is obtained by properly adjusting the bluff body position in the APPR. Based on the ICCD and OES results, the I vapor injected through the capillary nozzle electrode is observed to form I charge species. The formed I species could directly participate in growing in situ I-doped PPy films. Thus, in situ I-doped PPy nanostructure films grown using the proposed APPR exhibit higher thicknesses of 15.3 μm and good electrical conductivities, compared to the corresponding non-doped films.

摘要

为了通过原位碘(I)掺杂提高聚吡咯(PPy)纳米结构薄膜的导电性,本研究提出了一种大气压等离子体反应器(APPR),其中加热的I掺杂剂蒸气通过用作放电点火电极的毛细管电极进料。与单体气体分开引入反应器的大量加热I蒸气可通过毛细管电极被强等离子体有效地激活。特别是,通过适当调整APPR中的钝体位置可获得强等离子体。基于ICCD和OES结果,观察到通过毛细管喷嘴电极注入的I蒸气形成I电荷物种。形成的I物种可直接参与原位I掺杂PPy薄膜的生长。因此,与相应的未掺杂薄膜相比,使用所提出的APPR生长的原位I掺杂PPy纳米结构薄膜具有更高的厚度,为15.3μm,并且具有良好的导电性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a0/10935019/0c81aca4580c/nanomaterials-14-00468-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验