Yao Rui, Sun Kaian, Zhang Kaiyang, Wu Yun, Du Yujie, Zhao Qiang, Liu Guang, Chen Chen, Sun Yuhan, Li Jinping
College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
Nat Commun. 2024 Mar 12;15(1):2218. doi: 10.1038/s41467-024-46553-9.
Continuous and effective hydrogen evolution under high current densities remains a challenge for water electrolysis owing to the rapid performance degradation under continuous large-current operation. In this study, theoretical calculations, operando Raman spectroscopy, and CO stripping experiments confirm that Ru nanocrystals have a high resistance against deactivation because of the synergistic adsorption of OH intermediates (OH) on the Ru and single atoms. Based on this conceptual model, we design the Ni single atoms modifying ultra-small Ru nanoparticle with defect carbon bridging structure (UP-RuNi/C) via a unique unipolar pulse electrodeposition (UPED) strategy. As a result, the UP-RuNi/C is found capable of running steadily for 100 h at 3 A cm, and shows a low overpotential of 9 mV at a current density of 10 mA cm under alkaline conditions. Moreover, the UP-RuNi/C allows an anion exchange membrane (AEM) electrolyzer to operate stably at 1.95 V for 250 h at 1 A cm.
由于在连续大电流运行下性能迅速下降,在高电流密度下持续有效地析氢仍然是水电解面临的一个挑战。在本研究中,理论计算、原位拉曼光谱和CO脱附实验证实,由于OH中间体(OH)在Ru和单原子上的协同吸附,Ru纳米晶体具有较高的抗失活能力。基于这一概念模型,我们通过独特的单极脉冲电沉积(UPED)策略设计了具有缺陷碳桥结构的镍单原子修饰超小Ru纳米颗粒(UP-RuNi/C)。结果表明,UP-RuNi/C能够在3 A cm下稳定运行100 h,在碱性条件下,在10 mA cm的电流密度下具有9 mV的低过电位。此外,UP-RuNi/C允许阴离子交换膜(AEM)电解槽在1 A cm下于1.95 V稳定运行250 h。