Qiu Haifa, Yang Ming, Huang Haitao
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):35396-35408. doi: 10.1021/acsami.5c02406. Epub 2025 Jun 4.
Doping regulation holds promise to modulate electrocatalytic performance, yet it remains largely unexplored for ferroelectric (FE) BaTiO (BTO). By jointly employing first-principles calculations and machine learning (ML) analysis, we examine the effect of a broad range of transition metal (TM) doping in FE BTO on the electrocatalytic hydrogen evolution reaction (HER) activity and screen out the optimal TM dopants. We unveil that some early-to-middle group TM (V, Cr, Mo, Ta, Ru)-doped BTO surfaces feature higher synthesizability, which also exhibit noticeable HER activity with |Δ| < 0.2 eV owing to intermediate hydrogen adsorption strength. Among all doped surfaces, the Mo-doped one shows optimal HER activity under both out-of-plane and in-plane polarization states. We reveal an intense interplay between the hydrogen adsorption configuration and the corresponding hydrogen bonding interaction, which relies more on the TM group than the polarization state. Most importantly, we propose a physically informed descriptor of the surface oxygen band, which better describes HER activity trends of TM-doped surfaces than conventional band descriptors.This indicates the significance of the fractional filling and bandwidth of occupied oxygen -band states. Moreover, we establish a robust ML model that can well predict HER activity with surface-independent input parameters alone with value above 0.93. From these parameters, we identify the inherent outer electron number of the TM dopant as the dominant feature, while the second ionization energy of the TM dopant and the initial polarization state show non-negligible feature importance. These findings could enlighten understanding, rational design, and accelerated discovery of element doping of FE materials for catalysis and other implications.
掺杂调控有望调节电催化性能,但对于铁电体(FE)钛酸钡(BTO)而言,这方面仍 largely unexplored。通过联合运用第一性原理计算和机器学习(ML)分析,我们研究了FE BTO中广泛的过渡金属(TM)掺杂对电催化析氢反应(HER)活性的影响,并筛选出了最佳的TM掺杂剂。我们发现,一些早期至中期的TM(V、Cr、Mo、Ta、Ru)掺杂的BTO表面具有更高的可合成性,由于中等的氢吸附强度,这些表面在|Δ| < 0.2 eV时也表现出显著的HER活性。在所有掺杂表面中,Mo掺杂的表面在面外和面内极化状态下均表现出最佳的HER活性。我们揭示了氢吸附构型与相应氢键相互作用之间的强烈相互作用,这种相互作用更多地依赖于TM族而不是极化状态。最重要的是,我们提出了一个基于物理的表面氧带描述符,它比传统的能带描述符能更好地描述TM掺杂表面的HER活性趋势。这表明占据氧带状态的分数填充和带宽的重要性。此外,我们建立了一个强大的ML模型,该模型仅使用与表面无关的输入参数就能很好地预测HER活性, 值高于0.93。从这些参数中我们确定TM掺杂剂的固有外层电子数是主要特征,而TM掺杂剂的第二电离能和初始极化状态显示出不可忽视的特征重要性。这些发现有助于增进对FE材料用于催化及其他应用的元素掺杂的理解、合理设计和加速发现。