Suppr超能文献

一种新型集成深度神经网络模型与可解释人工智能用于基于CT图像的卵巢肿瘤精确分割与分类的实证评估

An Empirical Evaluation of a Novel Ensemble Deep Neural Network Model and Explainable AI for Accurate Segmentation and Classification of Ovarian Tumors Using CT Images.

作者信息

Kodipalli Ashwini, Fernandes Steven L, Dasar Santosh

机构信息

Department of Artificial Intelligence and Data Science, Global Academy of Technology, Bangalore 560098, India.

Department of Computer Science, Design, Journalism, Creighton University, Omaha, NE 68178, USA.

出版信息

Diagnostics (Basel). 2024 Mar 4;14(5):543. doi: 10.3390/diagnostics14050543.

Abstract

Ovarian cancer is one of the leading causes of death worldwide among the female population. Early diagnosis is crucial for patient treatment. In this work, our main objective is to accurately detect and classify ovarian cancer. To achieve this, two datasets are considered: CT scan images of patients with cancer and those without, and biomarker (clinical parameters) data from all patients. We propose an ensemble deep neural network model and an ensemble machine learning model for the automatic binary classification of ovarian CT scan images and biomarker data. The proposed model incorporates four convolutional neural network models: VGG16, ResNet 152, Inception V3, and DenseNet 101, with transformers applied for feature extraction. These extracted features are fed into our proposed ensemble multi-layer perceptron model for classification. Preprocessing and CNN tuning techniques such as hyperparameter optimization, data augmentation, and fine-tuning are utilized during model training. Our ensemble model outperforms single classifiers and machine learning algorithms, achieving a mean accuracy of 98.96%, a precision of 97.44%, and an F1-score of 98.7%. We compared these results with those obtained using features extracted by the UNet model, followed by classification with our ensemble model. The transformer demonstrated superior performance in feature extraction over the UNet, with a mean Dice score and mean Jaccard score of 0.98 and 0.97, respectively, and standard deviations of 0.04 and 0.06 for benign tumors and 0.99 and 0.98 with standard deviations of 0.01 for malignant tumors. For the biomarker data, the combination of five machine learning models-KNN, logistic regression, SVM, decision tree, and random forest-resulted in an improved accuracy of 92.8% compared to single classifiers.

摘要

卵巢癌是全球女性人口中主要的死亡原因之一。早期诊断对患者治疗至关重要。在这项工作中,我们的主要目标是准确检测和分类卵巢癌。为实现这一目标,考虑了两个数据集:癌症患者和非癌症患者的CT扫描图像,以及所有患者的生物标志物(临床参数)数据。我们提出了一种集成深度神经网络模型和一种集成机器学习模型,用于对卵巢CT扫描图像和生物标志物数据进行自动二分类。所提出的模型包含四个卷积神经网络模型:VGG16、ResNet 152、Inception V3和DenseNet 101,并应用变压器进行特征提取。这些提取的特征被输入到我们提出的集成多层感知器模型中进行分类。在模型训练期间,使用了预处理和CNN调优技术,如超参数优化、数据增强和微调。我们的集成模型优于单个分类器和机器学习算法,平均准确率达到98.96%,精确率为97.44%,F1分数为98.7%。我们将这些结果与使用UNet模型提取特征后再用我们的集成模型进行分类所获得的结果进行了比较。变压器在特征提取方面表现优于UNet,良性肿瘤的平均Dice分数和平均Jaccard分数分别为0.98和0.97,标准差分别为0.04和0.06,恶性肿瘤的平均Dice分数和平均Jaccard分数分别为0.99和0.98,标准差为0.01。对于生物标志物数据,与单个分类器相比,KNN、逻辑回归、支持向量机、决策树和随机森林这五个机器学习模型的组合使准确率提高到了92.8%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验