Suppr超能文献

利用多臂赌博机集成学习增强自动驾驶车辆中的车道检测

Enhancing lane detection in autonomous vehicles with multi-armed bandit ensemble learning.

作者信息

Pandian J Arun, Thirunavukarasu Ramkumar, Mariappan L Thanga

机构信息

School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India.

出版信息

Sci Rep. 2025 Jan 25;15(1):3198. doi: 10.1038/s41598-025-86743-z.

Abstract

This study introduces a novel ensemble learning technique namely Multi-Armed Bandit Ensemble (MAB-Ensemble), designed for lane detection in road images intended for autonomous vehicles. The foundation of the proposed MAB-Ensemble technique is inspired in terms of Multi-Armed bandit optimization to facilitate efficient model selection for lane segmentation. The benchmarking dataset namely TuSimple is used for training, validating and testing the proposed and existing lane detection techniques. Convolutional Neural Networks (CNNs) architecture which includes ENet, PINet, ResNet-50, ResNet-101, SqueezeNet, and VGG16Net are employed in lane detection problems to construct segmentation models and demonstrate proficiency in distinct road conditions. However, the proposed MAB-Ensemble technique overcomes the limitations of individual models by dynamically selecting the most suitable CNN model based on prevailing environmental factors. The proposed technique optimizes the segmentation accuracy and treats the attained accuracy as a reward signal in the context of reinforcement learning by interacting with the environment through CNN model selection. The MAB-Ensemble achieved an overall accuracy of 90.28% in different road conditions. The results overcome the performance of the individual CNN models and state-of-the-art ensemble techniques. Also, it demonstrates superior performance which includes daytime, night-time, and abnormal road conditions. The MAB-Ensemble technique offers a promising solution for robust lane detection by harnessing the collective strengths of diverse CNN models.

摘要

本研究介绍了一种新颖的集成学习技术,即多臂赌博机集成(MAB-Ensemble),专为自动驾驶车辆的道路图像中的车道检测而设计。所提出的MAB-Ensemble技术的基础是受到多臂赌博机优化的启发,以促进车道分割的高效模型选择。使用名为TuSimple的基准数据集来训练、验证和测试所提出的以及现有的车道检测技术。在车道检测问题中采用了包括ENet、PINet、ResNet-50、ResNet-101、SqueezeNet和VGG16Net在内的卷积神经网络(CNN)架构来构建分割模型,并展示在不同道路条件下的熟练度。然而,所提出的MAB-Ensemble技术通过根据当前环境因素动态选择最合适的CNN模型,克服了单个模型的局限性。所提出的技术优化了分割精度,并在强化学习的背景下,通过CNN模型选择与环境交互,将获得的精度视为奖励信号。MAB-Ensemble在不同道路条件下实现了90.28%的总体准确率。结果超过了单个CNN模型和现有最先进集成技术的性能。此外,它还展示了在白天、夜间和异常道路条件下的卓越性能。MAB-Ensemble技术通过利用不同CNN模型的集体优势,为稳健的车道检测提供了一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd27/11763021/e28fb75bffc2/41598_2025_86743_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验