Starczewska Anna, Kępińska Mirosława
Institute of Physics-Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland.
Materials (Basel). 2024 Mar 4;17(5):1196. doi: 10.3390/ma17051196.
Photonic crystals are artificial structures with a spatial periodicity of dielectric permittivity on the wavelength scale. This feature results in a spectral region over which no light can propagate within such a material, known as the photonic band gap (PBG). It leads to a unique interaction between light and matter. A photonic crystal can redirect, concentrate, or even trap incident light. Different materials (dielectrics, semiconductors, metals, polymers, etc.) and 1D, 2D, and 3D architectures (layers, inverse opal, woodpile, etc.) of photonic crystals enable great flexibility in designing the optical response of the material. This opens an extensive range of applications, including photovoltaics. Photonic crystals can be used as anti-reflective and light-trapping surfaces, back reflectors, spectrum splitters, absorption enhancers, radiation coolers, or electron transport layers. This paper presents an overview of the developments and trends in designing photonic structures for different photovoltaic applications.
光子晶体是一种人工结构,其介电常数在波长尺度上具有空间周期性。这一特性导致在这样一种材料内存在一个光谱区域,在该区域内光无法传播,这一区域被称为光子带隙(PBG)。它导致了光与物质之间独特的相互作用。光子晶体可以使入射光重新定向、集中甚至捕获。光子晶体的不同材料(电介质、半导体、金属、聚合物等)以及一维、二维和三维结构(层状、反蛋白石、木堆结构等)使得在设计材料的光学响应方面具有很大的灵活性。这开启了广泛的应用领域,包括光伏领域。光子晶体可用作抗反射和光捕获表面、背反射器、光谱分离器、吸收增强器、辐射冷却器或电子传输层。本文概述了用于不同光伏应用的光子结构设计的发展和趋势。