文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3D 打印的聚己内酯支架表面涂胶原和羟基磷灰石增强干细胞的成骨分化。

Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite.

机构信息

Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Sci Rep. 2022 Jul 20;12(1):12359. doi: 10.1038/s41598-022-15602-y.


DOI:10.1038/s41598-022-15602-y
PMID:35859093
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9300684/
Abstract

Bone tissue engineering uses various methods and materials to find suitable scaffolds that regenerate lost bone due to disease or injury. Poly(ε-caprolactone) (PCL) can be used in 3D printing for producing biodegradable scaffolds by fused deposition modeling (FDM). However, the hydrophobic surfaces of PCL and its non-osteogenic nature reduces adhesion and cell bioactivity at the time of implantation. This work aims to enhance bone formation, osteogenic differentiation, and in vitro biocompatibility via PCL scaffolds modification with Hydroxyapatite (HA) and Collagen type I (COL). This study evaluated the osteosupportive capacity, biological behavior, and physicochemical properties of 3D-printed PCL, PCL/HA, PCL/COL, and PCL/HA/COL scaffolds. Biocompatibility and cells proliferation were investigated by seeding human adipose tissue-derived mesenchymal stem cells (hADSCs) onto the scaffolds, which were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and 6-diamidino-2-phenylindole (DAPI) staining. In addition, the bone differentiation potential of the hADSCs was assessed using calcium deposition, alkaline phosphatase (ALP) activity, and bone-related protein and genes. Although all constructed scaffolds support hADSCs proliferation and differentiation, the results showed that scaffold coating with HA and COL can boost these capacities in a synergistic manner. According to the findings, the tricomponent 3D-printed scaffold can be considered as a promising choice for bone tissue regeneration and rebuilding.

摘要

骨组织工程利用各种方法和材料来寻找合适的支架,以再生因疾病或损伤而丢失的骨。聚己内酯(PCL)可用于 3D 打印,通过熔融沉积建模(FDM)生产可生物降解的支架。然而,PCL 的疏水面及其非成骨性会降低植入时的细胞黏附和生物活性。本工作旨在通过在 PCL 支架上修饰羟基磷灰石(HA)和 I 型胶原(COL)来增强骨形成、成骨分化和体外生物相容性。本研究评估了 3D 打印的 PCL、PCL/HA、PCL/COL 和 PCL/HA/COL 支架的骨支持能力、生物学行为和物理化学性能。通过将人脂肪组织来源的间充质干细胞(hADSCs)接种到支架上,研究了生物相容性和细胞增殖情况,通过 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐(MTT)检测和 6-二脒基-2-苯基吲哚(DAPI)染色分析细胞增殖情况。此外,通过钙沉积、碱性磷酸酶(ALP)活性以及与骨相关的蛋白和基因评估了 hADSCs 的成骨分化潜力。虽然所有构建的支架都支持 hADSCs 的增殖和分化,但结果表明,支架表面涂覆 HA 和 COL 可以以协同方式增强这些能力。根据研究结果,这种三组分 3D 打印支架可被视为骨组织再生和重建的有前途的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/27d1a95ee869/41598_2022_15602_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/5d12c7581295/41598_2022_15602_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/b12551c3d026/41598_2022_15602_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/bf7c3c26569a/41598_2022_15602_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/ad643190eaf9/41598_2022_15602_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/4def1c5dacb6/41598_2022_15602_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/200ee59ad41b/41598_2022_15602_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/27d1a95ee869/41598_2022_15602_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/5d12c7581295/41598_2022_15602_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/b12551c3d026/41598_2022_15602_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/bf7c3c26569a/41598_2022_15602_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/ad643190eaf9/41598_2022_15602_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/4def1c5dacb6/41598_2022_15602_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/200ee59ad41b/41598_2022_15602_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8503/9300684/27d1a95ee869/41598_2022_15602_Fig7_HTML.jpg

相似文献

[1]
Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite.

Sci Rep. 2022-7-20

[2]
3D-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells.

ACS Omega. 2021-12-14

[3]
Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.

J Transl Med. 2015-5-8

[4]
Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix<sup/>.

Tissue Eng Part A. 2017-6

[5]
[Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018-2-15

[6]
Melt Electrowriting Combined with Fused Deposition Modeling Printing for the Fabrication of Three-Dimensional Biomimetic Scaffolds for Osteotendinous Junction Regeneration.

Int J Nanomedicine. 2024

[7]
Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration.

BMC Vet Res. 2024-9-9

[8]
Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

Int J Nanomedicine. 2013-11-1

[9]
Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.

J Tissue Eng Regen Med. 2016-10

[10]
Osteoregenerative Potential of 3D-Printed Poly -Caprolactone Tissue Scaffolds In Vitro Using Minimally Manipulative Expansion of Primary Human Bone Marrow Stem Cells.

Int J Mol Sci. 2023-3-3

引用本文的文献

[1]
Fabrication and characterization of electrospun polycaprolactone/ derived-ECM composite scaffolds for small-diameter vascular grafts.

RSC Adv. 2025-8-29

[2]
Zinc Doped Synthetic Polymer Composites for Bone Regeneration: A Promising Strategy to Repair Bone Defects.

Int J Nanomedicine. 2025-7-1

[3]
TGF-β1/BSA coating modulates multi-phasic scaffolds for osteochondral tissue regeneration.

Mater Today Bio. 2025-5-17

[4]
Bottom-up Biomaterial strategies for creating tailored stem cells in regenerative medicine.

Front Bioeng Biotechnol. 2025-5-20

[5]
Composite Polylactide/Polycaprolactone Foams with Hierarchical Porous Structure for Pre-Vascularized Tissue Engineering.

Int J Mol Sci. 2025-3-25

[6]
Integrating melt electrowriting (MEW) PCL scaffolds with fibroblast-laden hydrogel toward vascularized skin tissue engineering.

Mater Today Bio. 2025-2-19

[7]
The Influence of Physiological Blood Clot on Osteoblastic Cell Response to a Chitosan-Based 3D Scaffold-A Pilot Investigation.

Biomimetics (Basel). 2024-12-21

[8]
Antibacterial Properties of PCL@45s5 Composite Biomaterial Scaffolds Based on Additive Manufacturing.

Polymers (Basel). 2024-11-30

[9]
Hydrogel Elastic Energy: A Stressor Triggering an Adaptive Stress-Mediated Cell Response.

Adv Healthc Mater. 2025-1

[10]
Investigating the Promising P28 Peptide-Loaded Chitosan/Ceramic Bone Scaffolds for Bone Regeneration.

Molecules. 2024-9-5

本文引用的文献

[1]
Boron Nitride Based Nanobiocomposites: Design by 3D Printing for Bone Tissue Engineering.

ACS Appl Bio Mater. 2020-4-20

[2]
Modulating the chemo-mechanical response of structured DNA assemblies through binding molecules.

Nucleic Acids Res. 2021-12-2

[3]
Regeneration of Bone Defects in a Rabbit Femoral Osteonecrosis Model Using 3D-Printed Poly (Epsilon-Caprolactone)/Nanoparticulate Willemite Composite Scaffolds.

Int J Mol Sci. 2021-9-25

[4]
3D Printing of Collagen/Oligomeric Proanthocyanidin/Oxidized Hyaluronic Acid Composite Scaffolds for Articular Cartilage Repair.

Polymers (Basel). 2021-9-16

[5]
3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA).

Polymers (Basel). 2021-9-15

[6]
Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective.

Molecules. 2021-4-26

[7]
Assessment of a PCL-3D Printing-Dental Pulp Stem Cells Triplet for Bone Engineering: An In Vitro Study.

Polymers (Basel). 2021-4-4

[8]
Fabrication of hybrid scaffolds obtained from combinations of PCL with gelatin or collagen via electrospinning for skeletal muscle tissue engineering.

J Biomed Mater Res A. 2021-9

[9]
Strategies for Bone Regeneration: From Graft to Tissue Engineering.

Int J Mol Sci. 2021-1-23

[10]
3D-Printed Poly(ε-Caprolactone)/Hydroxyapatite Scaffolds Modified with Alkaline Hydrolysis Enhance Osteogenesis In Vitro.

Polymers (Basel). 2021-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索