Suppr超能文献

基于机器学习的可解释建模,用于通过面部肌电图进行主观情绪动态感知

Machine Learning-Based Interpretable Modeling for Subjective Emotional Dynamics Sensing Using Facial EMG.

作者信息

Kawamura Naoya, Sato Wataru, Shimokawa Koh, Fujita Tomohiro, Kawanishi Yasutomo

机构信息

Computational Cognitive Neuroscience Laboratory, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo, Kyoto 606-8501, Japan.

Psychological Process Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.

出版信息

Sensors (Basel). 2024 Feb 27;24(5):1536. doi: 10.3390/s24051536.

Abstract

Understanding the association between subjective emotional experiences and physiological signals is of practical and theoretical significance. Previous psychophysiological studies have shown a linear relationship between dynamic emotional valence experiences and facial electromyography (EMG) activities. However, whether and how subjective emotional valence dynamics relate to facial EMG changes nonlinearly remains unknown. To investigate this issue, we re-analyzed the data of two previous studies that measured dynamic valence ratings and facial EMG of the corrugator supercilii and zygomatic major muscles from 50 participants who viewed emotional film clips. We employed multilinear regression analyses and two nonlinear machine learning (ML) models: random forest and long short-term memory. In cross-validation, these ML models outperformed linear regression in terms of the mean squared error and correlation coefficient. Interpretation of the random forest model using the SHapley Additive exPlanation tool revealed nonlinear and interactive associations between several EMG features and subjective valence dynamics. These findings suggest that nonlinear ML models can better fit the relationship between subjective emotional valence dynamics and facial EMG than conventional linear models and highlight a nonlinear and complex relationship. The findings encourage emotion sensing using facial EMG and offer insight into the subjective-physiological association.

摘要

理解主观情绪体验与生理信号之间的关联具有实践和理论意义。先前的心理生理学研究表明,动态情绪效价体验与面部肌电图(EMG)活动之间存在线性关系。然而,主观情绪效价动态是否以及如何与面部EMG变化呈非线性关系仍不清楚。为了研究这个问题,我们重新分析了之前两项研究的数据,这两项研究测量了观看情感电影片段的50名参与者的动态效价评分以及皱眉肌和颧大肌的面部EMG。我们采用了多线性回归分析和两种非线性机器学习(ML)模型:随机森林和长短期记忆。在交叉验证中,这些ML模型在均方误差和相关系数方面优于线性回归。使用SHapley加性解释工具对随机森林模型进行解释,揭示了几个EMG特征与主观效价动态之间的非线性和交互关联。这些发现表明,非线性ML模型比传统线性模型能更好地拟合主观情绪效价动态与面部EMG之间的关系,并突出了一种非线性和复杂的关系。这些发现鼓励使用面部EMG进行情绪感知,并为主体-生理关联提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ffe/10933898/94b7fc053f2c/sensors-24-01536-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验