Suppr超能文献

基于振动信号小波变换和视觉Transformer的无人水面艇推进器在变速条件下的故障诊断

Unmanned Surface Vehicle Thruster Fault Diagnosis via Vibration Signal Wavelet Transform and Vision Transformer under Varying Rotational Speed Conditions.

作者信息

Cho Hyunjoon, Park Jung-Hyeun, Choo Ki-Beom, Kim Myungjun, Ji Dae-Hyeong, Choi Hyeung-Sik

机构信息

Department of Mechanical Engineering, Korea Maritime & Ocean University, Busan 49112, Republic of Korea.

Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.

出版信息

Sensors (Basel). 2024 Mar 6;24(5):1697. doi: 10.3390/s24051697.

Abstract

Among unmanned surface vehicle (USV) components, underwater thrusters are pivotal in their mission execution integrity. Yet, these thrusters directly interact with marine environments, making them perpetually susceptible to malfunctions. To diagnose thruster faults, a non-invasive and cost-effective vibration-based methodology that does not require altering existing systems is employed. However, the vibration data collected within the hull is influenced by propeller-fluid interactions, hull damping, and structural resonant frequencies, resulting in noise and unpredictability. Furthermore, to differentiate faults not only at fixed rotational speeds but also over the entire range of a thruster's rotational speeds, traditional frequency analysis based on the Fourier transform cannot be utilized. Hence, Continuous Wavelet Transform (CWT), known for attributions encapsulating physical characteristics in both time-frequency domain nuances, was applied to address these complications and transform vibration data into a scalogram. CWT results are diagnosed using a Vision Transformer (ViT) classifier known for its global context awareness in image processing. The effectiveness of this diagnosis approach was verified through experiments using a USV designed for field experiments. Seven cases with different fault types and severity were diagnosed and yielded average accuracy of 0.9855 and 0.9908 at different vibration points, respectively.

摘要

在无人水面舰艇(USV)部件中,水下推进器对其任务执行的完整性至关重要。然而,这些推进器直接与海洋环境相互作用,使其始终容易出现故障。为了诊断推进器故障,采用了一种无需改变现有系统的非侵入性且经济高效的基于振动的方法。然而,在船体内部收集的振动数据会受到螺旋桨与流体相互作用、船体阻尼和结构共振频率的影响,从而产生噪声和不可预测性。此外,为了不仅在固定转速下,而且在推进器的整个转速范围内区分故障,基于傅里叶变换的传统频率分析无法使用。因此,连续小波变换(CWT)以其在时频域细微差别中封装物理特征的特性而闻名,被应用于解决这些复杂问题,并将振动数据转换为小波尺度图。使用在图像处理中以其全局上下文感知而闻名的视觉Transformer(ViT)分类器对CWT结果进行诊断。通过使用专为现场实验设计的无人水面舰艇进行实验,验证了这种诊断方法的有效性。诊断了七种不同故障类型和严重程度的情况,在不同振动点分别产生了0.9855和0.9908的平均准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/783a/10934099/6c6f37e35202/sensors-24-01697-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验