Suppr超能文献

基于积分梯度的连续小波变换在轴承故障诊断中的应用

Integrated Gradient-Based Continuous Wavelet Transform for Bearing Fault Diagnosis.

作者信息

Du Junfei, Li Xinyu, Gao Yiping, Gao Liang

机构信息

State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Sensors (Basel). 2022 Nov 12;22(22):8760. doi: 10.3390/s22228760.

Abstract

Bearing fault diagnosis is important to ensure safe operation and reduce loss for most rotating machinery. In recent years, deep learning (DL) has been widely used for bearing fault diagnosis and has achieved excellent results. Continuous wavelet transform (CWT), which can convert original sensor data to time-frequency images, is often used to preprocess vibration data for the DL model. However, in time-frequency images, some frequency components may be important, and some may be unimportant for DL models for fault diagnosis. So, how to choose a frequency range of important frequency components is needed for CWT. In this paper, an Integrated Gradient-based continuous wavelet transform (IG-CWT) method is proposed to address this issue. Through IG-CWT, the important frequency components and the component frequency range can be detected and used for data preprocessing. To verify our method, experiments are conducted on four famous bearing datasets using 3 DL models, separately, and compared with CWT, and the results are compared with the original CWT. The comparisons show that the proposed IG-CWT can achieve higher fault diagnosis accuracy.

摘要

轴承故障诊断对于确保大多数旋转机械的安全运行和减少损失至关重要。近年来,深度学习(DL)已被广泛用于轴承故障诊断并取得了优异的成果。连续小波变换(CWT)可以将原始传感器数据转换为时频图像,常用于为DL模型预处理振动数据。然而,在时频图像中,一些频率成分可能对故障诊断的DL模型很重要,而有些可能不重要。因此,CWT需要选择重要频率成分的频率范围。本文提出了一种基于集成梯度的连续小波变换(IG-CWT)方法来解决这个问题。通过IG-CWT,可以检测到重要频率成分及其频率范围,并将其用于数据预处理。为了验证我们的方法,分别使用3个DL模型在四个著名的轴承数据集上进行了实验,并与CWT进行了比较,结果与原始CWT进行了对比。比较结果表明,所提出的IG-CWT能够实现更高的故障诊断准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4e8/9692652/0ccfa6c4ecc6/sensors-22-08760-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验